Phase	Туре
Initial Site Investigation	Work Scope
X Corrective Action Feasibility Investigation	X Technical Report
Corrective Action Plan	PCF Reimbursement Request
Corrective Action Summary Report	General Correspondence
Operations and Monitoring Report	_

Corrective Action Feasibility Investigation and Site Monitoring Report

Northern Petroleum Bulk Storage Facility 521 Bay Street St. Johnsbury, Vermont

SMS Site #2005-3397

for

Bradford Oil Company P.O. Box 394 Bradford, VT 05033 (802) 222-5252 Contact: Richard Browne

Prepared by

Environmental Compliance Services, Inc. 65 Millet Street, Suite 301 Richmond, VT 05477 (802) 434-4500

Contact: Laura Woodard, Hydrogeologist, or Joseph Hayes, CPG, PG, Remediation Section Manager

December 18, 2006

TABLE OF CONTENTS

EXEC	UTIVE SU	J MMARY i
1.0	INTROL	DUCTION1
2.0		STORY
3.0		PTUAL SITE MODEL4
		Jorthwestern Plume
	3.2 S	outheaster Plume
4.0	INVEST	IGATIVE PROCEDURES AND RESULTS5
	4.1 C	Groundwater Elevation and Flow Direction
	4.2	Froundwater Sampling and Laboratory Analysis
	4.3 B	aildown Testing
	4.4 C	Contaminant Mass Estimates
5.0	EVALU A	ATION OF CORRECTIVE ACTION ALTERNATIVES8
		Capping Cappin Capping Capping Capping Capping Capping Capping Capping Capping
		NAPL Recovery
		nhanced Fluid Recovery
	5.4 S	ummary
TABLE	es.	
TITLE	Table 1	Groundwater Table Elevations
	Table 2	Summary of Analytical Results
	Table 3	Mass Estimates of TPH Detected in Soil above the Water Table
	Table 4	Mass Estimates of TPH Detected in Soil at or below the Water Table
	Table 5	Initial Screening of Remedial Action Alternatives
	Table 6	Cost Summary of LNAPL Removal Technologies (in Text)
	Table 7	Cost Summary of EFR Remediation (in Text)
FIGUR	ES	
	Figure 1	Site Location Map
	Figure 1a	Area Map
	Figure 2	Site Plan
	Figure 3	Groundwater Flow Direction Map
	Figure 4	Contaminant Distribution Map
	Figures 5-	28 Time-Series Graphs
APPEN	DICES	
	Appendix	A Laboratory Analytical Reports
	Appendix	• •
	Appendix	C Baildown Test Data & Analysis

EXECUTIVE SUMMARY

- This Corrective Action Feasibility Investigation (CAFI) and Site Monitoring Report was prepared by Environmental Compliance Services, Inc. (ECS) of Richmond, VT on behalf of Bradford Oil Company, Inc. of Bradford, VT to evaluate remedial alternatives at the Northern Petroleum Bulk Storage Facility (Site #2005-3397), located at 521 Bay Street in St. Johnsbury, Vermont (hereafter referred as the "Site"). ECS's findings are summarized as follows:
 - Recoverable amounts of light non-aqueous phase liquid (LNAPL) were detected in four wells in
 the southeastern corner and eastern side of the site. LNAPL was measured in on-site wells MW12 and MW-22, off-site upgradient well MW-28, and off-site downgradient well MW-7, at
 thicknesses ranging from 0.13 feet to 1.36 feet. Estimated actual LNAPL thickness ranged from
 0.01 feet to 0.03 feet. The presence of LNAPL, identified as gasoline, in off-site upgradient well
 MW-28 suggests an off-site source of contamination migrating onto the site.
 - LNAPL bail-down testing was conducted at one week intervals for four weeks. LNAPL thickness decreased with each removal event in most wells.
 - Vermont Groundwater Enforcement Standards (VGES) were exceeded for one or more petroleum hydrocarbons in samples collected from eleven monitoring wells, including offsite downgradient well MW-8. Total benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations in these eleven samples ranged from 5.0 micrograms per liter (μg/L) in MW-8 to 7,961 μg/L in upgradient onsite well MW-17. The presence of dissolved-phase petroleum contamination in upgradient MW-17 is likely from an off-site source. BTEX concentrations in most wells increased since the previous February 2006 sampling event.
 - The gasoline additive methyl tert-butyl ether (MTBE) was detected in eight wells located throughout the site at concentrations ranging from 3.3 µg/L in MW-31 to 5,620 µg/L in MW-1. This is generally consistent with the data collected during the initial site investigation; however, MTBE was detected in off-site wells MW-29 and MW-30 located on the former Ralston Purina property for the first time since sampling began in July 2005.
 - No petroleum volatile organic compounds (VOCs) were detected in off-site wells MW-1R, MW-26, MW-27, MW-32 or MW-101.
 - Groundwater in the unconfined surficial aquifer at the site appears to flow generally southeast toward the Passumpsic River, which is consistent with previous data. However, there appears to be anomalous groundwater elevations in the southeastern corner of the site in the vicinity of the tank farm. The cause of the lower groundwater elevations is unknown, but it may be hindering off-site migration based on contaminant concentrations in downgradient off-site monitoring wells MW-29 through MW-32. Gradients may vary in this location due to geologic factors such as subsurface gravel layers and slightly finer-grained soils in downgradient soil borings MW-29 through MW-32.

Based upon our current understanding of the Site conditions, the results of the bail-down testing, and this remedial alternative screening using the Federal Remediation Technologies Screening Matrix and Reference Guide, ECS recommends that LNAPL removal with passive bailers be conducted in the vicinity of the southeastern plume. Additional monitoring wells are recommended to delineate the full extent of free product and facilitate LNAPL recovery. Paving would enhance the LNAPL removal efforts by minimizing contaminant migration and reducing solubilization of LNAPL in the unsaturated zone at this site. Based on the results of previous investigations and the likely presence of an upgradient contaminant source, a more aggressive remedial approach in the vicinity of the southeastern plume may

EXECUTIVE SUMMARY

exacerbate the migration of contamination onto the Northern Petroleum site. It is the opinion of ECS that site closure not be contingent on contamination migrating onto the site in the northwestern portion of the property from potential off-site sources.

Document No. 204262CAFI_final2 18 December 2006 Page 1

1.0 INTRODUCTION

This Corrective Action Feasibility Investigation (CAFI) and Site Monitoring report has been prepared by Environmental Compliance Services, Inc. (ECS) of Richmond, VT on behalf of Bradford Oil Company, Inc. of Bradford, VT to evaluate remedial alternatives at the Northern Petroleum Bulk Storage Facility (Site #2005-3397), located at 521 Bay Street in St. Johnsbury, Vermont (Figures 1 & 1a). The CAFI was determined to be necessary to select a remedial alternative to eliminate light non-aqueous phase liquid (LNAPL) and expedite site closure. Preparation of the CAFI was approved by the Sites Management Section (SMS) of the Vermont Department of Environmental Conservation (VTDEC) in a letter dated 13 July 2006.

The purpose of this CAFI is to evaluate, identify, and select the corrective action(s) best suited to the conditions at the Northern Petroleum Bulk Storage Facility (the Site). The objectives of the corrective action(s) are to reduce volatile organic compound (VOC) contamination in soil and groundwater resulting from petroleum releases associated with a multiple-decade history of petroleum bulk storage on the Site. No sensitive receptors have been impacted by this contamination. The remedial goals for the Site are to eliminate LNAPL and mitigate contaminant migration. Vermont Groundwater Enforcement Standards (VGES) must be achieved at the property boundary in order to reach Site closure, as well as other conditions specified in the Sites Management Activity Completed (SMAC) Designation Procedures Manual (October 2001).

The scope of work included sampling groundwater monitoring wells, conducting bail-down tests on monitoring wells containing LNAPL, and evaluating remedial technologies that would be suitable for the Site.

2.0 SITE HISTORY

The site currently operates primarily as a bulk oil storage facility, with a small area in the northern portion of the site used for parking by a local bus shuttle service headquartered on adjacent property north of the site. The property includes two buildings currently used as an office building and storage garage for Northern Petroleum. The property also houses a propane cylinder and tank storage area and associated facility parking areas. The ground surface throughout the site is gravel. Stormwater appears to flow to the southeastern corner of the site and ponds near the outside of the bulk storage tank farm. A site plan is shown in Figure 2.

The bulk oil storage facilities include gasoline, diesel, kerosene and #2 fuel oil stored in aboveground storage tanks (ASTs) with a total capacity of approximately 130,000 gallons, all of which are located within an earthen bermed enclosure in the southeastern corner of the site. The base of the berm is composed of six inches of compacted clay. Oil from the bulk tanks is piped underground to a fueling rack located approximately 40 feet north of the tanks. Northern Petroleum personnel were unable to confirm whether or not buried piping leading from the ASTs to the loading rack is provided with secondary containment.

One 500-gallon underground storage tank (UST), used to store #2 heating oil for on-site use, is reportedly currently located south of the office building. A former 1,000-gallon UST used to store #2 fuel oil was reportedly located at the storage garage.

The site has been used for bulk petroleum storage for several decades, during which time at least three different bulk petroleum facilities have operated at the site. Since 1990, the site has been operated as a Northern Petroleum bulk storage facility. In 1990, the current generation of ASTs were reportedly moved to the site from a Northern Petroleum property located at 590 Bay Street. According to the Spill Prevention, Control, and Countermeasures (SPCC) Plan for the site, the current generation of onsite ASTs were originally constructed in 1953 (four tanks) and 1962 (two tanks).

For an unknown period prior to 1990, the site was operated as a petroleum bulk storage facility by Menut & Parks. Another petroleum bulk storage operation reportedly preceded the Menut & Parks business. Aerial photographs dated 1962, 1974, and 1983 illustrate four apparent horizontal bulk storage ASTs located in the northeastern portion of the property, and three apparent vertical bulk storage tanks in the east-center portion of the site. Available Sanborn maps for St. Johnsbury did not include coverage of the site to confirm the history of the site in the late 1980s to early 1990s.

An initial site investigation (ISI) was completed by ECS in December 2005, which included a historical review of the site and nearby properties, a site inspection, drilling of 32 soil borings and the subsequent installation of 21 monitoring wells, and a sensitive receptor survey. The ISI concluded that soil and groundwater at the site have been impacted with petroleum-related volatile organic compounds (VOCs) associated with both on-site and off-site sources. Although the preliminary investigation disclosed several potential on-site and off-site sources, no obvious source or sources were identified.

Petroleum contamination appears to have migrated onto the site from one or more upgradient off-site sources. LNAPL, identified as gasoline, was detected on the western side of Bay Street, upgradient of the site. This location is approximately 40 feet north of an existing well on the Lewis Oil bulk storage plant. The source of this LNAPL is unknown, but likely originated from a source other than the Northern Petroleum bulk plant. The upgradient extent of groundwater contamination in this area has not been defined. ECS recommended additional groundwater monitoring, as well as an evaluation of underground utilities that may be acting as a preferential pathway for contaminant migration.

Document No. 204262CAFI_final2 18 December 2006 Page 3

Additional site monitoring and soil survey along Bay Street was completed by ECS in April 2006. Recoverable amounts of LNAPL were detected in four wells at the site. No underground utilities were found to exist along Bay Street adjacent to the site.

Several nearby properties are listed as active or closed hazardous waste sites (Figure 1a). The Lewis Oil site, located adjacent to the Site across Bay Street, has reportedly served as a bulk oil storage facility for over 50 years. Prior to 1990, fuel was offloaded by rail car at a rack located approximately 80 feet west (upgradient) of the site. In a Phase II report conducted for the former Canadian Pacific Railway, approximately 120 cubic yards of petroleum-contaminated soil were reportedly excavated and stockpiled on the Lewis Oil site in 1990 (Tewhey, 1998). According to the VT DEC spill sites list, approximately 200 gallons of #2 fuel oil was released in January 1999 due to a tank overfill. The spills database indicated that Twin State Environmental provided clean up and the spill site was subsequently closed in February 1999.

A lubricating oil business has occupied the former Northern Petroleum Bulk Storage/office site for approximately 25 years. The former Northern Petroleum Bulk Storage/office site is located north of the site (Figure 1a).

The former Canadian Pacific Railway property has operated as a rail yard facility since the 1850s. The central portion of the rail yard formerly included fueling operations in the 1960s, approximately 600 feet northwest of the site (Tewhey, 1998).

3.0 CONCEPTUAL SITE MODEL

The site and limited portions of adjacent property to the east and west have been impacted by two or more petroleum contaminants including #2 fuel oil, gasoline, and possibly a third unidentified oil. Contaminant distribution and historical information indicates that the contamination likely originated from multiple sources. No obvious onsite sources, such as a leaking storage tank or spills, have been documented. Two contaminant plumes have been identified and are described below. Groundwater in the unconfined surficial aquifer appears to flow generally southeast toward the Passumpsic River.

3.1 NORTHWESTERN PLUME

The northwestern plume is the larger of the two and is defined by three areas of free product detected in MW-22 and MW-28 (also detected in MW-17 and MW-19 in previous investigations). The outer limits are delineated by reduced VOC concentrations in wells and/or relatively low PID readings in soil borings around the northern, eastern, and southern perimeters. The western extent of this plume, beyond MW-28, has not been defined.

Data collected to date suggest that a release related to the former bulk storage tanks may have contributed to the contamination in this portion of the site, but an offsite source west (upgradient) of MW-28 also is considered likely. LNAPL in upgradient monitoring well MW-28 was identified by the analytical laboratory as gasoline. No. 2 fuel oil was identified in soils above the water table in MW-1, and estimated to be present in MW-2 ECS, MW-17 and MW-18 in soil both above and below the water table. Other oil, (which may include lubricating, cutting, and/or silicon oil) was also identified above the water table in MW-2 ECS. No. 2 fuel oil and gasoline were detected in groundwater in these wells. Subsurface soils in this area generally consist of a fine to medium sand upper layer with underlying coarse sand and gravels. In all soil borings, the top of the water table is within the finer sands. PID readings in soil borings indicate that the vertical extent of contamination extends into the underlying coarse sand and gravel, where present. PID readings at six soil boring locations increase with increasing depth.

3.2 SOUTHEASTERN PLUME

The southeastern plume is defined by LNAPL detected in MW-7 and MW-12. The downgradient limits are delineated by reduced VOC concentration in wells and/or relatively low PID readings in soil borings in MW-29 through MW-32, SB-9 and SB-10. This downgradient limit extends approximately 40 feet beyond the Northern Petroleum property line. The upgradient extent of this plume is less discernable and may merge with the northwestern contaminant plume.

Data collected to date suggest that a release related to the current bulk storage tank system may have contributed to the contamination in this portion of the site. No. 2 fuel oil was identified in soils both above and below the water table in MW-5 and MW-12, both of which are located upgradient of MW-7. No. 2 fuel oil was also identified in groundwater in wells in this area. The hydrogeology in this area of the site is similar to that described in the previous section. PID readings in soil borings indicate that the vertical extent of contamination extends into the underlying coarse sand and gravel layer, generally decreasing in concentration with increasing depth.

4.0 INVESTIGATIVE PROCEDURES AND RESULTS

4.1 GROUNDWATER ELEVATION AND FLOW DIRECTION

During the July 2006 monitoring event, groundwater in the unconfined surficial aquifer at the site appeared to flow generally southeast toward the Passumpsic River, which is consistent with previous data. However, there appears to be anomalous groundwater elevations in the southeastern corner of the site in the vicinity of the tank farm. The cause of the lower groundwater elevations is unknown, but it may be hindering off-site migration by acting as a collection area for LNAPL in the southeast corner of the site. Gradients may vary in this location due to geologic factors (i.e. subsurface gravel layers and slightly finer-grained soils in downgradient soil borings MW-29 through MW-32).

The average horizontal hydraulic gradient was approximately 0.16 percent between MW-13 and MW-17. The vertical groundwater flow components at the site, and the hydraulic relationship between the shallow unconfined aquifer and the bedrock aquifer, are currently unknown.

Fluid levels were measured in the monitoring wells on 17 and 18 July 2006 to calculate the groundwater flow direction. Depths to groundwater in the on-site monitoring wells ranged from 4.06 feet (MW-13) to 7.62 feet (MW-26) below top-of-casing. Static water-table elevations were computed for each monitoring well by subtracting the measured depth-to-water readings from the surveyed top-of-casing elevations, which are relative to an arbitrary site datum of 100.00 feet. Groundwater elevations for wells that contained LNAPL were corrected by multiplying the LNAPL thickness by the specific gravity of fuel oil (assumed to be 0.9) and subtracting the result from the measured depth to water. Water-level measurements and elevation calculations are presented in Table 1. A groundwater flow direction map was prepared using these data (Figure 3).

4.2 GROUNDWATER SAMPLING AND LABORATORY ANALYSIS

Groundwater samples were collected on 17, 18, and 31 July, 2006 from on-site monitoring wells MW-1, MW-2 ECS, MW-4, MW-5, MW-13, MW-16, MW-17, MW-18, and MW-19, and off-site wells MW-8, MW-26, MW-27, MW-29, MW-31, MW-32, MW- 2 (existing well), MW-101, and MW-102 and analyzed for the possible presence of VOCs via the EPA Method 8021B list of petroleum-related VOCs (Figure 5). Samples were not collected from MW-4 or MW-11 because these wells could not be located during the sampling events. In accordance with ECS and industry standard operating procedures, groundwater samples were not collected from four monitoring wells in which LNAPL was detected (MW-7, MW-12, MW-22, and MW-28). No petroleum VOCs were detected in off-site wells MW-1R, MW-26, MW-27, MW-32 or MW-101.

VGES 1 were exceeded for one or more petroleum hydrocarbons in samples collected from eleven monitoring wells, including one offsite downgradient well (MW-8). Total BTEX concentrations in these eleven samples ranged from 5.0 micrograms per liter (μ g/L) in MW-8 to 7,961 μ g/L in onsite well MW-17. The total BTEX concentrations in upgradient Lewis Oil wells MW-2 and MW-102 were 169.8 and 18.6 μ g/L, respectively. BTEX concentrations in most wells increased an average of 269 percent since the February 2006 sampling event.

The gasoline additive methyl tert-butyl ether (MTBE) was detected in eight wells located throughout the site at concentrations ranging from 3.3 μ g/L in MW-31 to 5,620 μ g/L in MW-1. This is generally consistent with the data collected during the initial site investigation, however, MTBE was detected in off-site wells MW-29 and MW-30 for the first time since sampling began.

LNAPL was measured in onsite wells MW-7, MW-12, MW-22, and MW-28 at thicknesses of 0.13, 0.20, 1.36 and 0.64 feet, respectively (Table 1). Bail-down testing was performed during this monitoring event and is discussed in more detail in Section 3.3.

Prior to groundwater sample collection, the monitoring wells were purged using low-flow sampling techniques in accordance with ECS and industry standard protocols. Purge water was discharged directly to the ground in the vicinity of each well. A trip blank and a duplicate sample were collected to ensure that adequate quality assurance/quality control (QA/QC) standards were maintained.

All samples were transported under chain-of-custody in an ice-filled cooler to Spectrum Analytical, Inc. of Agawam, Massachusetts. Relative percent difference (RPD) values for the duplicate sample, collected from MW-16, were within the EPA guideline of 30 percent. No VOCs were detected in the trip blank. Analytical results are included in Table 2 and the laboratory analytical reports are presented in Appendix A; time series graphs are presented in Figures 5-28.

4.3 BAILDOWN TESTING

ECS performed weekly LNAPL gauging and removal from monitoring wells MW-7, MW-12, MW-22, and MW-28 on 18 July, 24 July, 31 July, and 7 August 2006. A total of 0.29 gallons of LNAPL was recovered and stored on-site. LNAPL thickness was determined using an interface probe. The information gathered from the bail-down test was used to evaluate the actual LNAPL thickness and the success of LNAPL removal efforts at the site.

On 18 July 2006, the initial LNAPL thickness in MW-7 was 0.13 feet and recovered to an average thickness of 0.10 feet over the next 30 minutes. The actual LNAPL thickness is estimated to be 0.01 feet, based on graphical interpretation¹. A total of 40 milliliters (mL) or 0.01 gallons were recovered. During the next three visits, the initial LNAPL thickness decreased from 0.13 feet on 24 July 2006 to 0.01 feet on 7 August 2006. A total of 65 mL was recovered from MW-7. LNAPL removal efforts resulted in a decrease of product thickness over the four week monitoring period, indicating that LNAPL removal may be successful in the vicinity of the southeastern plume.

Due to difficulty locating MW-12, baildown testing was only performed on 31 July 2006. The actual LNAPL thickness is estimated to be 0.02 feet, based on graphical interpretation¹. The initial LNAPL thickness in MW-12 was 0.20 feet and recovered to an average thickness of 0.12 feet over the next 80 minutes. A total of 40 mL or 0.01 gallons were recovered.

On 18 July 2006, the initial LNAPL thickness in MW-22 was 1.36 feet and recovered to an average thickness of 0.16 feet over the next 30 minutes. The actual LNAPL thickness is estimated to be 0.01 feet, based on graphical interpretation¹. A total of 500 mL or 0.13 gallons were recovered. During the next three visits, LNAPL thickness decreased to 0.23 feet on 24 July 2006 and 0.13 feet on 31 July 2006. The thickness on 7 August 2006 was 1.45 feet. A total of 730 mL was recovered from MW-22. LNAPL removal efforts resulted in a decrease of product recovery over the three week monitoring period, with the exception of the 7 August 2006 initial LNAPL thickness.

On 18 July 2006, the initial LNAPL thickness in MW-28 was 0.64 feet and recovered to an average thickness of 0.15 feet over the next 30 minutes. The actual LNAPL thickness is estimated to be 0.03 feet,

¹ Hughes, J.P., Sullivan, C.R., and Zinner, R.E., 1988. Two Techniques for Determining the True Hydrocarbon Thickness in an Unconfined Sandy Aquifer. *Proceedings of the Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration*, November 1988, Pages 291 to 314.

based on graphical interpretation¹. A total of 200 mL or 0.05 gallons were recovered. No LNAPL was detected during the 24 July 2006 site visit. LNAPL thickness was 0.35 feet on 24 July 2006 and 0.16 feet on 7 August 2006. A total of 250 mL was recovered from MW-28. LNAPL removal efforts resulted in a decrease of product thickness during the four weeks.

Bail-down test data are presented in Charts 1 through 4 in Appendix C. Bail-down test data indicate that in most monitoring locations, the LNAPL thickness decreased with each removal effort.

4.4 CONTAMINANT MASS ESTIMATES

Northwestern Plume

Based on soil samples collected on 18 July 2005, estimates of contaminant mass and LNAPL saturation were calculated in soils above and below the water table. Approximately 25,000 pounds of predominantly fuel oil-related hydrocarbon contamination are estimated to be present above the water table within the 1,000 μ g/L total VOC isopleth from the July 2006 monitoring event (Table 3), representing a LNAPL saturation of approximately 5 percent in the pore spaces above the water table. Approximately 38,000 pounds of predominantly fuel oil-related hydrocarbon contamination are estimated to be present at or below the water table within the 1,000 μ g/L total VOC isopleth from the July 2006 monitoring event (Table 4), representing an LNAPL saturation of approximately 3.7 percent in the pore spaces above the water table.

Mass estimates were calculated based on TPH soil analytical data (presented in the December 2005 Site Investigation Report) from samples collected from monitoring wells MW-1, MW-2 ECS, MW-17, and MW-18.

Southeastern Plume

Based on soil samples collected on 18 July 2005, estimates of contaminant mass and LNAPL saturation were calculated in soils above and below the water table. Approximately 3,000 pounds of predominantly fuel oil-related hydrocarbon contamination are estimated to be present above the water table within the 1,000 μ g/L total VOC isopleth from the July 2006 monitoring event (Table 3), representing a LNAPL saturation of approximately 1.3 percent in the pore spaces above the water table. Approximately 516 pounds of predominantly fuel oil-related hydrocarbon contamination are estimated to be present at or below the water table within the 1,000 μ g/L total VOC isopleth from the July 2006 monitoring event (Table 4), representing a LNAPL saturation of approximately 0.2 percent in the pore spaces above the water table. Based on these calculations, there appears to be more mass above the water table in the southeastern portion of the site, suggesting that on-site sources may be responsible for contamination.

Mass estimates were calculated based on TPH soil analytical data (presented in the December 2005 Site Investigation Report) from samples collected from monitoring wells MW-5, MW-12, and MW-13.

5.0 EVALUATION OF CORRECTIVE ACTION ALTERNATIVES

Based on Site-specific conditions and the type and distribution of petroleum contamination detected in Site soil and groundwater, potentially applicable technologies were evaluated for their effectiveness at remediating Site contamination (Table 5 – Initial Screening of Remediation Alternatives). The screening process was based upon the Federal Remediation Technologies Screening Matrix and Reference Guide Version 4.0. Each of the remedial action alternatives was scored on the basis of its effectiveness, reliability, cleanup time, and overall costs to reduce the level of risk posed by the concentrations of contamination in the groundwater and soil at the Site. The scoring was determined as follows:

		TECHNOLOGY EVALUATION CRITERIA								
CHARACTERISTIC	0	3	5	7	10					
Effectiveness	Ineffective	Possible	Somewhat Effective	Effective	Very Effective					
Reliability	Not Reliable	Limited Reliability	Somewhat Reliable	Reliable	Very Reliable					
Cleanup Time	Slowest	Slow	Average	Fast	Fastest					
Overall Costs	Exorbitant	Very Costly	Average Cost	Inexpensive	Low or No Cost					

A remedial action alternative was considered to be Not Viable if the effectiveness, reliability, or overall cleanup time of the alternative was considered to be zero or if the combined score of the effectiveness, reliability, cleanup time, and overall costs was calculated to be less than 15. A remedial action alternative was considered to be Potentially Viable if the effectiveness, reliability, and overall cleanup time were greater than zero and if the combined score of effectiveness, reliability, cleanup time, and overall costs was between 15 and 20. A remedial action alternative was considered to be Viable if the effectiveness, reliability, and overall cleanup time were greater than zero and if the combined score of effectiveness, reliability, cleanup time, and overall costs was greater than 20.

In-situ and ex-situ remediation options were evaluated during this investigation. Due to the presence of upgradient contamination, a majority of full-scale site-wide remediation technologies were not retained because of the likelihood of recontamination from off-site properties. A more aggressive remedial approach on-site may exacerbate the migration of contaminants onto the Northern Petroleum site. Excavation may be a viable technology at this site; however, due to challenges at the site, including the location of the tank farm and berm, and the presence of downgradient contamination on the property of an uncooperative adjacent landowner, excavation was not retained as a remedial alternative at this time. Three potential treatment options were retained for further evaluation until contamination at upgradient properties are addressed. Viable remedial action alternatives included:

- Capping;
- LNAPL recovery; and,
- Enhanced Fluid Recovery (EFR).

5.1 CAPPING

Description

Capping would include paving the grassy or porous media surfaces on the site (approximately 33,600 square feet). The current parking lot consists of gravel. Paving the parking lot would limit exposure of subsurface constituents, reduce infiltration of surface water and contaminant migration, and prevent leaks and spills from impacting the ground surface.

Effectiveness

Capping is an effective way of reducing infiltration and preventing petroleum leaks and spills from entering the subsurface. Capping will not reduce existing concentrations of contaminated soil and groundwater at the site; however, it will likely reduce migration off-site. Capping at this site may minimize additional solubilization of LNAPL, especially that which is present above the water table. Future remedial activities would require disturbing and reparation of the cap.

Implementability

A majority of the site consists of a gravel parking lot, which would be easily paved. Existing monitoring wells would have to be protected and road boxes elevated to grade. Paving would likely have to occur in the warmer weather months.

Cost

The estimated cost associated with paving the Northern Petroleum parking lot is approximately \$70,000.

5.2 LNAPL RECOVERY

Description

LNAPL recovery involves pumping or bailing LNAPL from existing monitoring and recovery wells. Pumping could be achieved by the use of permanently-installed LNAPL pumps at specific wells or with a pump or manual collection device that requires a field technician to operate during a site visit.

Manual bailer extraction or passive bailers can be used to remove LNAPL. A passive bailer is a tube that is empty or filled with absorbent material that is lowered into a well, secured with a rope or string, and left to perform its function. Typically, a hydrophobic screen near the top of the unit allows the product to enter and be collected by the absorbent material and keeps the water out. Once installed at a predetermined level, the passive bailer is able to collect LNAPL only within a set range. LNAPL is removed from the bailer during site visits and stored on-site for eventual off-site disposal.

Effectiveness

Bail-down testing conducted at the site in July-August 2006 suggests that LNAPL thickness was effectively reduced during each event, and in most cases, remained lower the following week, suggesting that the actual plume thickness is less than that measured and/or LNAPL recharge is slow. The effectiveness of LNAPL recovery is determined based on the extent and thickness of the LNAPL plume, the spacing of extraction wells, the recovery method and the rate of LNAPL recharge. Larger-diameter extraction wells (2-inch or greater) will be necessary to accommodate the LNAPL recovery pumps and passive bailers, and would likely have greater recovery than the existing one-inch microwells. Passive bailers and product pumps, such as the Spill Buddy Pro by Clean Earth Technologies, effectively remove only LNAPL from the well. Passive bailers are relatively inexpensive, but require positioning the unit at the proper depth as the water table fluctuates. The average groundwater fluctuation at the site, based on data from three monitoring events, is 1.2 feet.

LNAPL recovery has a fair to moderate certainty of success at eliminating LNAPL; however, this technique is unlikely to reduce VOCs in soils or groundwater to levels approaching background concentrations over the long term. Therefore this alternative is recommended as a temporary solution until upgradient sources of contamination are remediated.

Implementability

Product recovery pumps that are permanently installed would require very little maintenance and would be fairly easy to implement. Tubing may have to be installed underground at a shallow depth to a 55-gallon drum. A field pump or bailer extraction would be easy to implement, but would require more frequent site visits.

Costs

Table 6 includes a summary of preliminary estimated costs associated with LNAPL removal at the Site using bailer events, pump events, and permanently-installed product pumps. Costs have been estimated based on one year of operation with semi-annual groundwater monitoring and quarterly reporting. Monthly site visits are assumed for bailer removal and field pumping events. Permanently-installed product pumps would be installed in six newly-installed extraction wells, and site visits would be scheduled every other month. Equipment costs have been estimated using purchase pricing from Clean Earth Technologies; these costs may be reduced based on monthly rental options.

TABLE 6	Passive Bailers	Field Pumping	Installed Pumps
Install Monitoring Wells (>/=2")	\$10,000	\$10,000	\$10,000
LNAPL Removal (monthly for 1 year)	\$12,000	\$15,000	\$0
Pump installation and O&M (6 wells)	\$0	\$0	\$50,000
Groundwater Monitoring (semi-annually)	\$10,000	\$10,000	\$10,000
Reporting (quarterly) & Coordination	\$8,000	\$8,000	\$8,000
TOTAL ESTIMATED COST	\$40,000	\$43,000	\$78,000

5.3 ENHANCED FLUID RECOVERY

Description

EFR utilizes a vacuum truck to periodically apply a vacuum to recovery wells in order to extract LNAPL and dissolved-phase petroleum-impacted groundwater. EFR events only require the installation of recovery wells with no trenches or conveyance piping. Periodically, impacted groundwater, vapor, and/or LNAPL are recovered by applying a vacuum on the recovery well or trench. This alternative is effective at extracting source and residual hydrocarbon constituents present in both unsaturated and saturated zones, and it is highly effective in silty or low permeability soils.

Recovered fluids would be shipped to a licensed hazardous waste treatment facility via vacuum tanker truck. Vapors generated from the vacuum blower during extraction will be treated using vapor-phase granular activated carbon (GAC) units. These units will be left on-site until sufficient extraction events have occurred to induce breakthrough, at which time the GAC units will be replaced with fresh GAC, and the spent GAC will be transported to a licensed GAC regeneration facility.

Effectiveness

EFR remediation has a moderate to high certainty of success at reducing concentrations of absorbedphase hydrocarbons and eliminating LNAPL; however, this technique is unlikely to reduce VOCs to levels approaching background concentrations over the long term. Therefore this alternative is recommended as a temporary solution until upgradient sources of contamination are resolved. Larger-diameter extraction wells (2-inch or greater) will be necessary to conduct EFR.

Implementability

This remedial action alternative is not technically complex, and will not be difficult to implement. EFR remediation would only require subsurface excavations associated with the installation of recovery wells; however, each vacuum truck extraction event will require coordination with site workers and personnel due to the use of temporary hoses and placement of the vacuum tanker truck.

Cost

Table 7 includes a summary of preliminary estimated costs associated with LNAPL removal at the Site using EFR. A cost of \$58,000 is estimated based on six LNAPL recovery events in one year.

TABLE 7	EFR
Install Monitoring Wells (>/=2")	\$10,000
EFR events (6/yr for 1 year)	\$30,000
Groundwater Monitoring (semi-annually)	\$10,000
Reporting (quarterly) & Coordination	\$8,000
TOTAL ESTIMATED COST	\$58,000

5.4 SUMMARY

Based upon our current understanding of the Site conditions and the results of the bail-down testing and this remedial alternative screening, ECS recommends that LNAPL removal with passive bailers be conducted in the vicinity of the southeastern plume. Additional monitoring wells are recommended to delineate the full extent of free product and facilitate LNAPL recovery. Paving would enhance the LNAPL removal efforts by minimizing contaminant migration. Paving will also reduce solubilization of LNAPL in the unsaturated zone at this site. Justification for using these technologies is as follows:

- LNAPL recovery would provide a cost-effective way of reducing and/or eliminating LNAPL to minimize further on-site dissolved-phase contaminant plume migration and expedite site closure;
- The average groundwater fluctuation is 1.2 feet; therefore, passive bailers would not require frequent repositioning with high and low water table conditions;
- Paving is recommended to reduce migration of dissolved-phase contaminants and minimize solubilization of LNAPL, especially from the unsaturated soils at the site; and
- A more comprehensive remediation system may be recommended when upgradient sources are addressed.

Table 1. Groundwater Elevations

521 Bay Street St. Johnsbury, VT

Monitoring Date: 17 & 18 July 2006 (3 wells on 31st)

Well I.D.	Top of Casing Elevation	Depth to Product	Depth to Water	Product Thickness	Corrected Depth to Water	Water Table Elevation
MW-1	100.00		4.80			95.20
MW-1R	-		4.85			-
MW-2 (existing)	100.14		4.80			95.34
MW-2ECS	100.16		5.48			94.68
MW-4	99.15		NS			-
MW-5	98.95		4.20			94.75
MW-7	100.50	5.62	5.75	0.13	5.63	94.87
MW-8	100.67		5.86			94.81
MW-11	98.75		NS			-
MW-12*	98.65	3.88	4.08	0.2	3.90	94.75
MW-13	98.98		4.06			94.92
MW-16	99.56		4.55			95.01
MW-17 *	99.83		4.75			95.08
MW-18 *	99.96		4.73			95.23
MW-19	100.05		4.68			95.37
MW-22	99.95	4.43	5.79	1.36	4.57	95.38
MW-26	102.76		7.62			95.14
MW-27	102.90		7.39			95.51
MW-28	102.09	6.92	7.56	0.64	6.98	95.10
MW-29	99.63		4.70			94.93
MW-30	100.01		5.01			95.00
MW-31	99.95		4.82			95.13
MW-32	99.75		4.66			95.09
MW-101 (existing)			4.81			
MW-102			4.20			

Notes:

All values reported in feet relative to a datum of 100.00 ft.

NS - Not Sampled

Corrected ground-water elevations were calculated by multiplying the petroleum product thickness by the specific gravity of #2 fuel oil (0.9) and subtracting the result from the measured depth to water.

^{*} sampled on 7/31/06

Table 2. Summary of Groundwater Analytical Results

521 Bay Street St. Johnsbury, VT

Monitoring Dates: 17-18 and 31 July 2006

	ON-SITE MONITORING WELLS												
Sample Identification	VGES	MW-1	MW-2 ECS	MW-4	MW-5	MW-11	MW-12	MW-13	MW-16	MW-17	MW-18	MW-19	MW-22
Sampling Date		7/17/06	7/17/06	7/17/06	7/17/06	7/17/06	7/17/06	7/17/06	7/17/06	7/31/06	7/31/06	7/17/06	7/17/06
VOLATILE ORGANIC COMPOUBRLS by EPA Method 8260B (μg/L)													
Benzene	5	536	782	NS	149	NS	FP	104	202	1450	728	91.6	FP
Ethylbenzene	700	263	450	NS	BRL<5.0	NS	FP	BRL<1.0	BRL<5.0	549	150	233	FP
Toluene	1,000	142	94.5	NS	BRL<5.0	NS	FP	BRL<1.0	BRL<5.0	2,110	125	460	FP
Total Xylenes	10,000	1,152	1,241.0	NS	BRL<15.0	NS	FP	BRL<3.0	11.4	3,852	768.8	951	FP
BTEX		2,093	2,567.5	NS	149	NS	FP	104	213.4	7,961	1,772	1,736	FP
Naphthalene	20	90.0	132	NS	12.8	NS	FP	BRL<1.0	47.2	364	87.8	84.6	FP
1,2,4-Timethylbenzene	5	230	270	NS	20.5	NS	FP	1.1	48.5	819	277	248	FP
1,3,5-Timethylbenzene	4	65.5	74.0	NS	BRL<5.0	NS	FP	BRL<1.0	18.2	242	70.6	66.5	FP
Methyl tert-butyl ether	40	5,620	1,610	NS	352	NS	FP	133	BRL<5.0	14.0	108	BRL<5.0	FP

Notes:

-- - not analyzed or not applicable

μg/L - micrograms per liter

BRL - Below Reporting Limit

FP - Free-phase product in well; well not sampled.

mg/L - milligrams per liter

NS - Not Sampled

VGES - Vermont Groundwater Enforcement Standards (exceedances are shaded)

MW-4 and MW-11 were not located during the sampling event.

Table 2. Summary of Groundwater Analytical Results

521 Bay Street St. Johnsbury, VT

Monitoring Dates: 17-18 and 31 July 2006

	OFF-SITE MONITORING WELLS													
Sample Identification	VGES	MW-1R	MW-7	MW-8	MW-26	MW-27	MW-28	MW-29	MW-30	MW-31	MW-32	MW-2 (existing well)	MW-101 (existing well)	MW-102
Sampling Date		7/18/06	7/17/06	7/18/06	7/17/06	7/17/06	7/17/06	7/18/06	7/18/06	7/18/06	7/18/06	7/18/06	7/18/06	7/17/06
VOLATILE ORGANIC COMPOUBRLS by EPA Method 8260B (μg/L)														
Benzene	5	BRL<1.0	FP	5.0	BRL<1.0	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	58.4	BRL<1.0	5.2
Ethylbenzene	700	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	37.2	BRL<1.0	BRL<1.0
Toluene	1,000	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	8.4	BRL<1.0	1.2
Total Xylene	10,000	BRL<3.0	FP	BRL<3.0	BRL<3.0	BRL<3.0	FP	BRL<3.0	BRL<3.0	BRL<3.0	BRL<3.0	65.8	BRL<3.0	13.4
BTEX		BRL	FP	5.0	BRL	BRL	FP	BRL	BRL	BRL	BRL	169.8	BRL	18.6
Naphthalene	20	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	12.4	BRL<1.0	8.1
1,2,4 Trimethylbenzene	5	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	40.0	BRL<1.0	12.7
1,3,5 Trimethylbenzene	4	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	FP	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	12.0	BRL<1.0	9.3
MTBE	40	BRL<1.0	FP	38.6	BRL<1.0	BRL<1.0	FP	10.0	3.8	3.3	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0

Notes:

-- - not analyzed or not applicable

μg/L - micrograms per liter

BRL - Below Reporting Limit

FP - Free-phase product in well; well not sampled.

mg/L - milligrams per liter

CL - Cannot Locate; well not sampled

NS - Not Sampled

VGES - Vermont Groundwater Enforcement Standards (exceedances are shaded)

Table 2. Summary of Groundwater Analytical Results

521 Bay Street St. Johnsbury, VT

Monitoring Dates: 17-18 and 31 July 2006

	QA/QC SAMPLES										
Sample Identification	VGES	Trip	Duplicate	Original Sample (MW-16)	% difference						
Sampling Date		7/17/06	7/17/06	7/17/06							
VOLATILE ORGANIC COMPOUBRLS (μg/L)											
Benzene	5	BRL<1.0	186	202	8.2						
Ethylbenzene	700	BRL<1.0	BRL<5.0	BRL<5.0							
Toluene	1,000	BRL<1.0	BRL<5.0	BRL<5.0							
Total Xylene	10,000	BRL<3.0	11.5	11.4	0.9						
BTEX		-	186	213.4							
Naphthalene	20	BRL<1.0	46.0	47.2	2.6						
1,2,4 Trimethylbenzene	5	BRL<1.0	46.0	48.5	5.3						
1,3,5 Trimethylbenzene	4	BRL<1.0	17.8	18.2	2.2						
MTBE	40	BRL<1.0	BRL<5.0	BRL<5.0	-						

Notes:

-- - not analyzed or not applicable

μg/L - micrograms per liter

BRL - Below Reporting Limit

FP - Free-phase product in well; well not sampled.

mg/L - milligrams per liter

NS - Not Sampled

VGES - Vermont Groundwater Enforcement Standards (exceedances are shaded)

CL - Cannot Locate; well not sampled

Table 3

Mass Estimates of Total Petroleum Hydrocarbons (TPH) Detected in Soil Above the Water Table

Northern Petroleum

St. Johnsbury, Vermont

Sample ID	MW-1	MW-2 ECS	MW-17	MW-18	MW-5	MW-12	MW-13	
Sample Depth (feet)	2 feet	3 feet	4.5 feet	4 feet	2 feet	3 feet	4.5 feet	
Sampling Date	7/18/2005	7/18/2005	7/18/2005	7/18/2005	7/18/2005	7/18/2005	7/18/2005	
Total Petroleum Hydrocarbons (mg/Kg)		Northwe	stern Plume		Sou	theastern Pl	ume	
Fuel Identification	-	#2 fuel oil and other oil	#2 fuel oil	#2 fuel oil	#2 fuel oil	-	-	
TOTAL VPH (mg/Kg)	6,110	1,920	4,630	14,300	190	3,620	1,400	
AVERAGE VPH IN SOIL (mg/Kg)		6	1,737					
Estimated Plume Area (ft ²)		8	,400			4,000		
Impacted Soil Thickness (ft)			3			3		
Total Soil Volume (yd ³)			933			444		
Total Weight of Soil (Kg)		1,6	96,970			808,081		
Residual TPH Mass (Kg)		1	1,438			1,403		
Residual TPH Mass (Lbs)		2:	3,087					
Equivalent Volume of LNAPL (gallons)	4,133				507			
NAPL Saturation (% pore space)		4	1.28%					

Table 4

Mass Estimates of Total Petroleum Hydrocarbons (TPH) Detected in Soil at or below the Water Table

Northern Petroleum

St. Johnsbury, Vermont

Sample ID	MW-1	MW-2 ECS	MW-17	MW-18	MW-5	MW-12	MW-13		
Sample Depth (feet)	8 feet	11 feet	5 feet	6 feet	8 feet	11 feet	7 feet		
Sampling Date	7/18/2005	7/18/2005	7/18/2005	7/18/2005	7/18/2005	7/18/2005	7/18/2005		
Total Petroleum Hydrocarbons (mg/Kg)		Northwest	ern Plume		Sou	itheastern Pl	ume		
	#2 fuel oil and other								
Fuel Identification	oil	#2 fuel oil	#2 fuel oil	#2 fuel oil	-	#2 fuel oil	-		
TOTAL VPH (mg/Kg)	1,750	55.9	17,700	725	369	104	180		
AVERAGE VPH IN SOIL (mg/Kg)		5,0	218						
Estimated Plume Area (ft ²)		8,4	00		4,000				
Impacted Soil Thickness (ft)		6				4			
Total Soil Volume (yd ³)		1,8	67			593			
Total Weight of Soil (Kg)		3,393	,939			1,077,441			
Residual TPH Mass (Kg)		17,1	.66			235			
Residual TPH Mass (Lbs)		37,7	516						
Equivalent Volume of LNAPL (gallons)		85							
NAPL Saturation (% pore space)		3.74	1%	3.74%					

Northern Petroleum St. Johnsbury, Vermont

			1	echnology E	Evaluation Criteri	a ¹			Retained for	Solution⁴
Response Action	Remedial Technology	Description	Effectiveness ²	Reliability	Cleanup Time ²	Overall Costs	Total Score	Viability ³	Evaluation	1
No Action	None	No effort to control, remove or monitor impact or control site access.	0	5	0	10	15	Not viable. This alternative would not reduce dissolved- and adsorbed-phase concentrations below applicable standards. Migration of LNAPL and petroleum-contaminated groundwater will not be recorded.	No	NA
institutional Controls	Site fencing and security	Fence site perimeter to restrict access.	0	5	0	7		Not viable. This alternative would not reduce dissolved- and adsorbed-phase concentrations below applicable standards.	No	NA
	Activity and Use Limitation	Deed restriction to identify prohibited site uses as well as personal protection for selected site activities.	0	0	0	7	7	Not viable. Alternative would not reduce dissolved- and adsorbed- phase concentrations below applicable standards. In order to achieve site closure, a notice to the land records would be required.	No	NA
Site Monitoring	Natural Attenuation	Monitoring of volatilization, dispersion and biological, or chemical degradation of petroleum hydrocarbons over time.	0	0	3	10		Not viable. Due to the presence of LNAPL at this site, this alternative would not reduce dissolved- and adsorbed-phase concentrations below applicable standards.	No	NA
Passive Containment	Capping	Limits exposure to subsurface constituents and prevents additional infilitration of rain/surface water.	3	7	3	7	20	Viable. The site mostly contains a gravel parking lot. Although this alternative would not reduce contaminant concentrations below applicable standards, it may prevent migration and protect the subsurface from leaks or spills in the future.	Yes	Permanent
	Vertical barriers	Prevents horizontal migration of constituents.	0	5	0	3		Not viable. This alternative would not reduce dissolved- and adsorbed-phase concentrations below applicable standards. In order to achieve site closure, a notice to the land records would be required.	No	NA
		Collect NAPL by passive absorbent socks or containers from existing monitoring wells and recovery wells.	0	3	3	7		Not Viable. All of the existing monitoring wells on the site are 1-inch diameter wells, which are too small for absorbant socks.	No	NA
Active Containment	NAPL recovery	Pump or bail NAPL from existing monitoring and recovery wells.	5	7	5	7	24	Viable. This alternative would serve to reduce the LNAPL source from the subsurface and and would in turn reduce dissolved-phase concentrations. Off-site contamination would have to be addressed before active remediation would be recommended.	Yes	NA
	Hydraulic Capture	Operation of single or dual phase pump in recovery well.	3	5	3	3	14	Not Viable. Off-site migration of LNAPL onto the site limits the effectiveness of remediation using in-situ technologies without treatment of upgradient properties.	No	NA

Rating scale definitions:

Effectiveness: 0 - ineffective, 3 - possible, 5 - somewhat effective, 7 - effective, 10 - very effective Encliability: 0 - not reliable, 3 - limited reliability, 5 - somewhat reliable, 7 - reliable, 10 - very reliable Cleanup Time: 0 - slowest, 3 - slow, 5 - average, 7 - fast, 10 - fastest

Overall Costs: 0 - exorbitant, 3 - very costly, 5 - average cost, 7 - inexpensive, 10 - low or no cost Total Score: Sum of the individual scores for Effectiveness, Reliability, Cleanup Time, and Overall Costs.

2) Remedial technologies are automatically rejected when effectiveness, reliability, and/or cleanup time, and overall costs.

3) Viability: Qualitative assessment of the application of the remedial technology to site-specific limitations.

4) Solution: NA - Not Applicable.

5) All ex-situ action would require the excavation of impacted soil and/or groundwater.

Northern Petroleum St. Johnsbury, Vermont

			1	echnology E	Evaluation Criteria	a ¹			Retained for	Solution⁴
Response Action	Remedial Technology	Description	Effectiveness ²	Reliability	Cleanup Time ²	Overall Costs	Total Score	Viability ³	Evaluation	<u> </u>
In Situ Treatment	Deep soil mixing	Large augers are advanced into impacted areas while injecting stabilizing agents.	0	0	0	0	0	Not viable. This alternative would not reduce dissolved- and adsorbed-phase concentrations below applicable standards.	No	NA
	Shallow soil stabilization	Stabilizing agents are injected in impacted areas using injection wells or jet grouting techniques.	0	0	0	0	0	Not viable. This alternative would not reduce dissolved- and adsorbed-phase concentrations below applicable standards.	No	NA
	Biosparging - Air Sparging (AS)	Inject air or pure oxygen below the water table. This process should increase dissolved ${\sf O}_2$ in the groundwater, enhancing aerobic degradation of petroleum constituents in the saturated and vadose zones.	3	3	3	5		Not Viable. Not viable for LNAPL remediation. Off-site migration of LNAPL onto the site limits the effectiveness of remediation using in- situ technologies without treatment of upgradient properties.	No	NA
	Bioventing - Soil Vapor Extraction (SVE)	SVE system exhausts soil gases from the unsaturated zone, with potential increase of O $_{\rm 2}$ levels in the unsaturated zone, enhancing aerobic degradation of petroleum constituents.	3	3	3	5		Not Viable. Not viable for LNAPL remediation. Off-site migration of LNAPL onto the site limits the effectiveness of remediation using insitu technologies without treatment of upgradient properties.	No	NA
	Air Sparging and Soil Vapor Extraction	AS system increases dissolved O $_2$ levels in the groundwater, enhancing aerobic degradation of petroleum hydrocarbons, and promotes volatilization of dissolved VPH to the unsaturated zone. SVE system exhausts soil gases from the unsaturated zone, with potential increase of O $_2$ levels in the unsaturated zone, enhancing aerobic degradation of	3	3	3	5		Not Viable. Not viable for LNAPL remediation. Off-site migration of LNAPL onto the site limits the effectiveness of remediation using insitu technologies without treatment of upgradient properties.	No	NA
	Multi Phase Extraction (MPE)	Impacted groundwater is recovered utilizing recovery wells and either an applied vacuum or submersible pumps. Avacuum is applied to each well to remove VPH-impacted groundwater in the saturated zone and VOC constituents in the unsaturated zone, and to augment the recharge rate for the recovery wells. In addition, airflow is induced through the unsaturated zone enhancing biodegradation of any residual petroleum constituents.	3	3	5	3		Not Viable. Off-site migration of free-product onto the site limits the effectiveness of remediation using in-situ technologies without treatment of upgradient properties.	No	NA

Rating scale definitions:

Effectiveness: 0 - ineffective, 3 - possible, 5 - somewhat effective, 7 - effective, 10 - very effective Reliability: 0 - not reliable, 3 - limited reliability, 5 - somewhat reliable, 7 - reliable, 10 - very reliable

- Reliability: 0 not reliable, 3 limited reliability, 5 somewhat reliable, 7 reliable, 10 very reliable
 Cleanup Time: 0 slowest, 3 slow, 5 average, 7 fast, 10 fastest
 Overall Costs: 0 exorbitant, 3 very costly, 5 average cost, 7 inexpensive, 10 low or no cost
 Total Score: Sum of the individual scores for Effectiveness, Reliability, Cleanup Time, and Overall Costs.
 2) Remedial technologies are automatically rejected when effectiveness, reliability, and/or cleanup time are given a score of 0.
 3) Viability: Qualitative assessment of the application of the remedial technology to site-specific limitations.
 4) Solution: NA Not Applicable.
 5) All ex-situ action would require the excavation of impacted soil and/or groundwater.

Northern Petroleum St. Johnsbury, Vermont

					valuation Criteria				Retained for	Solution⁴
Response Action	Remedial Technology	Description	Effectiveness ²	Reliability	Cleanup Time ²	Overall Costs	Total Score	Viability ³	Evaluation	
In Situ Treatment (Continued)	Enhanced Fluid Recovery	Impacted groundwater is recovered utilizing recovery wells and an applied vacuum. A vacuum truck is used to periodically remove VPH-impacted groundwater and LNAPL in the saturated zone and VOC constituents in the unsaturated zone, and to augment the recharge rate for the recovery wells. In addition, airflow is induced through the unsaturated zone permitting biodegradation of any residual petroleum constituents.	7	5	3	7		Viable. Periodic events will not be effective at reducing LNAPL thickness and dissolved-phase concentrations. Without addressing the upgradient source of contamination, the potential for continued treatments would be necessary to remove LNAPL.	Yes	NA
	Air-lift Re-Circulation Trench and Natural Attenuation Monitoring	An interceptor trench is used to cut off plume migration. A large diameter well, installed within the trench, contains an internal drop tube positioned at the top of the well screen. Compressed air is routed through the drop tube and travels	3	3	5	3	14	Not Viable. Not viable for LNAPL remediation. Off-site migration of LNAPL onto the site limits the effectiveness of remediation using insitu technologies without treatment of upgradient properties.	No	NA
	Addition of biocatalyst to wells	Inject solutions of biocatalyst to wells. Stimulates microbes to degrade hydrocarbons.	3	3	3	7	16	Not Viable. Not viable for LNAPL remediation.	No	NA
	Groundwater chemical treatment. Soil Flushing	Inject surfactants to partition soil constituents into groundwater. Groundwater is continuously extracted and treated. Chemical oxidants or biocatalysts can be flushed within the system during latter stages of treatment.	3	5	5	5		Not Viable. Off-site migration of free-product onto the site limits the effectiveness of remediation using in-situ technologies without treatment of upgradient properties.	No	NA
	Chemical oxidation	Inject chemical oxidants into the subsurface.	3	5	5	5		Not Viable. Not viable for LNAPL remediation. Off-site migration of LNAPL onto the site limits the effectiveness of remediation using insitu technologies without treatment of upgradient properties.	No	NA
	Steam stripping	Inject steam into subsurface to volatilize and mobilize the hydrocarbons impacts.	7	3	3	0		Not Viable. Off-site migration of free-product onto the site limits the effectiveness of remediation using in-situ technologies without treatment of upgradient properties.	No	NA
	Vitrification	Apply intense electrical heating of soil matrix, resulting in a glassy mass.	7	3	3	0		Not Viable. Off-site migration of free-product onto the site limits the effectiveness of remediation using in-situ technologies without treatment of upgradient properties.	No	NA

Rating scale definitions:

Effectiveness: 0 - ineffective, 3 - possible, 5 - somewhat effective, 7 - effective, 10 - very effective

Reliability: 0 - not reliable, 3 - limited reliability, 5 - somewhat reliable, 7 - reliable, 10 - very reliable Cleanup Time: 0 - slowest, 3 - slow, 5 - average, 7 - fast, 10 - fastest

Overall Costs: 0 - exorbitant, 3 - very costly, 5 - average cost, 7 - inexpensive, 10 - low or no cost Total Score: Sum of the individual scores for Effectiveness, Reliability, Cleanup Time, and Overall Costs.

2) Remedial technologies are automatically rejected when effectiveness, reliability, and/or cleanup time are given a score of 0.

3) Viability: Qualitative assessment of the application of the remedial technology to site-specific limitations.

4) Solution: NA - Not Applicable.

5) All ex-situ action would require the excavation of impacted soil and/or groundwater.

Northern Petroleum St. Johnsbury, Vermont

				echnology E	valuation Criteri	a ¹		_	Retained for	Solution⁴
Response Action	Remedial Technology	Description	Effectiveness ²	Reliability	Cleanup Time ²	Overall Costs	Total Score	Viability ³	Evaluation	
Ex Situ Treatment ⁵	High temperature incineration	Destroy hydrocarbons by heating soils to high temperature.	3	3	10	0	10	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
	Medium to high temperature thermal desorption	Remove VOCs and Semi-VOCs by heating excavated soils in a desorption chamber.	3	3	10	3	19	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
	Co-burning as fuel	Supplement boiler fuel with site residuals.	3	3	10	0		Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
	Soil washing	Mix surfactants with excavated soil to separate hydrocarbons from the soil matrix.	3	3	5	3	14	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
	Solvent extraction	Mix solvent with excavated soil. Solvent treated for removal of hydrocarbons.	3	3	5	3	14	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil	No	NA
	Supercritical extraction	A solvent gas (i.e. CO ₂) treats impacted soil under supercritical conditions.	3	3	10	0		Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
	Cement manufacturing	Supplement fossil fuels with high energy wastes for cement manufacturing.	3	3	10	0	16	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
Rating scale definitions are considered as the constant of the constant o	Brick manufacturing	Impacted soil substitutes for shale and clay in the manufacturing.	3	3	10	0		Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA

Effectiveness: 0 - ineffective, 3 - possible, 5 - somewhat effective, 7 - effective, 10 - very effective Effectiveness: 0 - ineffective, 3 - possible, 5 - somewhat effective, 7 - effective, 10 - very effective
Reliability, 0 - not reliability, 6 - somewhat effective, 7 - reliabile, 10 - very reliable
Cleanup Time: 0 - slowest, 3 - slow, 5 - average, 7 - fast, 10 - fastest
Overall Costs: 0 - exorbitant, 3 - very costly, 5 - average cost, 7 - inexpensive, 10 - low or no cost
Total Score: Sum of the individual scores for Effectiveness, Reliability, Cleanup Time, and Overall Costs.

2) Remedial technologies are automatically rejected when effectiveness, reliability, and/or cleanup time are given a score of 0.

3) Viability: Qualitative assessment of the application of the remedial technology to site-specific limitations.

4) Solution: NA - Not Applicable.

5) All ex-situ action would require the excavation of impacted soil and/or groundwater.

Northern Petroleum St. Johnsbury, Vermont

			Т	echnology E	valuation Criteria	a ¹			Retained for	Solution⁴
Response Action	Remedial Technology	Description	Effectiveness ²	Reliability	Cleanup Time ²	Overall Costs	Total Score	Viability ³	Evaluation	
(Continued)		Impacted soil is stockpiled or placed in roll-off containers. Vacuum lines running through the stockpile draw air through the soil which enhances aerobic degradation.	3	3	5	3	14	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
	Bed treatment	Impacted soil is placed at a thickness that allows aerobic biodegradation to occur.	3	3	5	3	14	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
		Impacted soil is stockpiled 3-6 feet in height with bulking agent.	3	3	5	3	14	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
		Impacted soil is combined with water, nutrients, and microorganisms in a bioreactor and aerated.	3	3	5	3	14	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
	Asphalt-batch recycling	Combine impacted soil with asphalt material to encapsulate contaminants.	3	3	10	3	19	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient	No	NA
1) Pating code definitions:	, , ,	Transport impacted soils off-site and place soils on polyethylene sheeting and cover. Soils have to be tested periodically to determine whether the solid equivalent of VGESs are met before approval to thinspread.	3	3	5	5	16	Not viable. Soil excavation would remediate LNAPL saturated soils; however, LNAPL is detected in wells on upgradient off-site properties and may be migrating onto the site. The location of the tank farm and bermed area limits the effectiveness of soil excavation. There are challenges in working with the downgradient property owner.	No	NA

Rating scale definitions:

Effectiveness: 0 - ineffective, 3 - possible, 5 - somewhat effective, 7 - effective, 10 - very effective Reliability: 0 - not reliable, 3 - limited reliability, 5 - somewhat reliable, 7 - reliable, 10 - very reliable Cleanup Time: 0 - slowest, 3 - slow, 5 - average, 7 - fast, 10 - fastest Overall Costs: 0 - exorbitant, 3 - very costly, 5 - average cost, 7 - inexpensive, 10 - low or no cost Total Score: Sum of the individual scores for Effectiveness, Reliability, Cleanup Time, and Overall Costs.

- 2) Remedial technologies are automatically rejected when effectiveness, reliability, and/or cleanup time are given a score of 0.

 3) Viability: Qualitative assessment of the application of the remedial technology to site-specific limitations.

 4) Solution: NA Not Applicable.

 5) All ex-situ action would require the excavation of impacted soil and/or groundwater.

FIGURE 5. MW-1 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	1,060	433	1,560	6,920	9,973	6,980	507	1,830	632	94.29
02/14/06	608	110	403	1,884	3,005	3,740	142	539	160	95.62
07/17/06	536	142	263	1,152	2,093	5,620	65.5	230	90.0	95.20
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L). MTBE - methyl tert-butyl ether

TMB - trimethyl benzene
BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

ECS 08-204262labanalysis

FIGURE 6. MW-1R Existing VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	-
02/14/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	-
07/17/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	=
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter ($\mu g/L$).

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

NS - Not Sampled

ECS 08-204262labanalysis

FIGURE 7. MW-2 Existing **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Groundw ater Elevation
07/29/05	150	25.7	121	437	733.7	BRL<10.0	41.3	126	50.6	94.29
02/15/06	19.9	4.0	20.7	27.3	71.9	BRL<1.0	4.6	14.0	3.3	95.74
07/18/06	58.4	8.4	37.2	65.8	169.8	BRL<1.0	12.0	40.0	12.4	95.34
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

ECS 08-204262labanalysis

FIGURE 8. MW-2 ECS **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	827	93	398	1,420	2,738	2,110	136	416	304	94.22
02/14/06	596	70.0	380	1,020.5	2,067	1,330	72.5	286	111	95.51
07/17/06	782	94.5	450	1,241.0	2,567.5	1,610	74.0	270	132	94.68
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 9. MW-4 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	4.9	4.6	2.0	14.1	25.6	38.8	2.5	7.5	1.3	93.90
02/15/06	4.4	BRL<1.0	BRL<1.0	3.2	7.6	22.2	BRL<1.0	2.5	1.4	
VGES	5	1,000	700	10,000		40	4	5	20	

Notes

Concentrations in micrograms per liter ($\mu g/L$).

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

BRL - Below Reporting Limit
VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 10. MW-5 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	157	BRL<5.0	21.6	145	323.6	337	55.6	159	93.7	93.84
02/15/06	243	BRL<5.0	10.7	49.7	303.4	435	19.2	63.8	26.6	95.20
07/17/06	149	BRL<5.0	BRL<5.0	BRL<15.0	149	352	BRL<5.0	20.5	12.8	94.75
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 11. MW-7 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	93.06
02/14/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	95.30
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

NS - Not sampled due to free-phase product in well.

FIGURE 12. MW-8 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	17.7	BRL<1.0	BRL<1.0	BRL<2.0	17.7	61.6	BRL<1.0	BRL<1.0	BRL<1.0	94.07
02/14/06	2.2	BRL<1.0	BRL<1.0	BRL<2.0	2.2	99.8	BRL<1.0	BRL<1.0	BRL<1.0	95.27
07/18/06	5.0	BRL<1.0	BRL<1.0	BRL<3.0	5.0	38.6	BRL<1.0	BRL<1.0	BRL<1.0	94.81
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 13. MW-11 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	18.2	BRL<1.0	1.3	2.1	21.6	4.9	3.4	50.6	BRL<1.0	95.00
02/14/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L). MTBE - methyl tert-butyl ether

MTBE - methyl tert-butyl ethe TMB - trimethyl benzene BRI - Below Reporting Limit

BRL - Below Reporting Limit VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 14. MW-12 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<10.0	BRL<10.0	162	758.7	920.7	BRL<10.0	252	760	438	93.59
02/14/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	95.33
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L). MTBE - methyl tert-butyl ether

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

NS - Not sampled due to free-phase product in well.

FIGURE 15. MW-13 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	60.2	BRL<5.0	29.0	198.1	287.3	154	135	313	103	93.85
02/15/06	1.0	BRL<1.0	2.7	10.2	13.9	18.1	12.8	26.8	8.0	95.09
07/17/06	104	BRL<1.0	BRL<1.0	BRL<3.0	104	133	BRL<1.0	1.1	BRL<1.0	94.92
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 16. MW-16 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	453	5.8	11.1	39.6	509.5	43.8	64.6	177	224	93.99
02/15/06	1.1	BRL<1.0	BRL<1.0	BRL<2.0	1.1	1.3	BRL<1.0	BRL<1.0	BRL<1.0	95.40
07/17/06	202	BRL<5.0	BRL<5.0	11.4	213.4	BRL<5.0	18.2	48.5	47.2	95.01
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 17. MW-17 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	94.03
02/15/06	614	543	309	1,940	3,406	BRL<10.0	244	802	188	95.48
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter ($\mu g/L$).

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

NS - Not sampled due to free-phase product in well.

FIGURE 18. MW-18 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	2.770	6.290	1.310	9.070	19.440	1.570	905	3.230	824	94.23
	_,	0,200	1,010	3,070	13,440	1,570	303	3,230	024	34.23
02/15/06	373	601	141	1,098	2,213	130	102	347	52.4	95.60

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

BRL - Below Reporting Limit
VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 19. MW-19 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	94.35
02/15/06	72.9	16.5	179	650.6	919	BRL<5.0	289	748	83.0	96.25
07/17/06	91.6	460	233	951	1,736	BRL<5.0	66.5	248	84.6	95.37
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether
TMB - trimethyl benzene
RRI Relew Penerting Limit

BRL - Below Reporting Limit
VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

NS - Not sampled due to free-phase product in well.

FIGURE 20. MW-22 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	616	1,450	1,050	5,016	8,132	BRL<50	363	1,310	352	94.24
02/14/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	95.58
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter ($\mu g/L$).

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

NS - Not sampled due to free-phase product in well.

FIGURE 21. MW-26 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<5.0	95.87
02/15/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	95.82
07/17/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	95.14
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L). MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit
VGES - Vermont Groundwater Enforcement Standards
Shaded areas indicate VGES exceedances.

FIGURE 22. MW-27 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<5.0	95.87
02/15/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	95.80
07/17/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	95.51
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L). MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit
VGES - Vermont Groundwater Enforcement Standards
Shaded areas indicate VGES exceedances.

FIGURE 23. MW-29 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<5.0	95.49
02/14/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	95.15
07/18/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	10.0	BRL<1.0	BRL<1.0	BRL<1.0	94.93
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 24. MW- 30 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	1.1	2.0	2.2	95.64
02/14/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	
07/18/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	3.8	BRL<1.0	BRL<1.0	BRL<1.0	95.00
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter ($\mu g/L$).

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

BRL - Below Reporting Limit
VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances. Not Sampled. Removed from Sampling Plan.

FIGURE 25. MW- 31 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<5.0	95.82
02/14/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	6.9	BRL<1.0	BRL<1.0	BRL<1.0	95.23
07/18/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	3.3	BRL<1.0	BRL<1.0	BRL<1.0	95.13
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter ($\mu g/L$).

MTBE - methyl tert-butyl ether TMB - trimethyl benzene BRL - Below Reporting Limit

BRL - Below Reporting Limit
VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

FIGURE 26. MW- 32 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<5.0	95.86
02/14/06	NS	NS	NS	NS	NS	NS	NS	NS	NS	
07/17/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	95.09
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L). MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit VGES - Vermont Groundwater Enforcement Standards Shaded areas indicate VGES exceedances. Not Sampled. Removed from Sampling Plan.

FIGURE 27. MW-101 **VOC Concentrations**

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	-
02/15/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<2.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	-
07/18/06	BRL<1.0	BRL<1.0	BRL<1.0	BRL<3.0	BRL	BRL<1.0	BRL<1.0	BRL<1.0	BRL<1.0	-
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L). MTBE - methyl tert-butyl ether

TMB - trimethyl benzene

BRL - Below Reporting Limit VGES - Vermont Groundwater Enforcement Standards Shaded areas indicate VGES exceedances.

Well not surveyed in.

FIGURE 28. MW-102 VOC Concentrations

Northern Petroleum Bulk Storage Plant St. Johnsbury, VT

Date	Benzene	Toluene	Ethyl benzene	Xylenes	Total BTEX	MTBE	1,3,5 TMB	1,2,4 TMB	Naph- thalene	Ground- Water Elevation
07/29/05	NS	NS	NS	NS	NS	NS	NS	NS	NS	-
02/15/06	4.9	BRL<1.0	BRL<1.0	6.5	11.4	BRL<1.0	1.3	2.2	1.1	-
07/17/06	5.2	1.2	BRL<1.0	13.4	18.6	BRL<1.0	9.3	12.7	8.1	-
VGES	5	1,000	700	10,000		40	4	5	20	

Notes:

Concentrations in micrograms per liter (µg/L).

MTBE - methyl tert-butyl ether
TMB - trimethyl benzene
BBL - Below Percetting Limit

BRL - Below Reporting Limit
VGES - Vermont Groundwater Enforcement Standards

Shaded areas indicate VGES exceedances.

NS - Not Sampled. Well not included in initial sampling plan.

Well not surveyed in.

APPENDIX A

LABORATORY ANALYTICAL REPORTS

Report Date: 03-Aug-06 16:43

\checkmark	Final Report
	Re-Issued Report
	Revised Report

Laboratory Report

Environmental Compliance Services 65 Millet Street; Suite 301 Richmond, VT 05477

Attn: Laura Woodard

Project: N. Petroleum - St. Johnsbury, VT

Project 08-204262.00

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA48439-01	Trip Blank	Ground Water	17-Jul-06 08:15	20-Jul-06 10:15
SA48439-02	MW-5	Ground Water	17-Jul-06 11:45	20-Jul-06 10:15
SA48439-03	MW-13	Ground Water	17-Jul-06 12:05	20-Jul-06 10:15
SA48439-04	MW-1	Ground Water	17-Jul-06 14:55	20-Jul-06 10:15
SA48439-05	MW-16	Ground Water	17-Jul-06 12:45	20-Jul-06 10:15
SA48439-06	DUP	Ground Water	17-Jul-06 12:45	20-Jul-06 10:15
SA48439-07	MW-19	Ground Water	17-Jul-06 15:50	20-Jul-06 10:15
SA48439-08	MW-2 ECS	Ground Water	17-Jul-06 16:05	20-Jul-06 10:15
SA48439-09	MW-26	Ground Water	17-Jul-06 17:15	20-Jul-06 10:15
SA48439-10	MW-27	Ground Water	17-Jul-06 17:25	20-Jul-06 10:15
SA48439-11	MW-102	Ground Water	17-Jul-06 18:20	20-Jul-06 10:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met.

Please note that this report contains 10 pages of analytical data plus Chain of Custody document(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc.

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777

Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972

New Jersey # MA011/MA012 New York # 11393/11840

Rhode Island # 98 USDA # S-51435

Vermont # VT-11393

Authorized by:

Hanibal C. Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

<u>Matrix</u> Ground Water Collection Date/Time 17-Jul-06 08:15

CAS No. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile Organic Compounds										
Volatile Organic Compounds by 8260	<u>)B</u>									
Prepared by method SW846 5030 W	ater MS									
71-43-2 Benzene	BRL		μg/l	1.0	1	SW846 8260B	26-Jul-06	27-Jul-06	6071635	ek
100-41-4 Ethylbenzene	BRL		μg/l	1.0	1	n n	"	"	"	"
1634-04-4 Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	"
91-20-3 Naphthalene	BRL		μg/l	1.0	1	"	"	"	"	"
108-88-3 Toluene	BRL		μg/l	1.0	1	"	"	"	"	"
95-63-6 1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	"
108-67-8 1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	"
1330-20-7 m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	"
95-47-6 o-Xylene	BRL		μg/l	1.0	1	n n	"	"	"	"
Surrogate recoveries:										
460-00-4 4-Bromofluorobenzene	95.3		70-130	%		"	"	"	"	"
2037-26-5 Toluene-d8	96.0		70-130	%		"	"	"	"	"
17060-07-0 1,2-Dichloroethane-d4	108		70-130	%		"	"	"	"	"
1868-53-7 Dibromofluoromethane	103		70-130	%		"	"	"	"	"
Sample Identification										
Sample Identification MW-5 SA48439-02			t Project # 04262.00	C	<u>Matrix</u> Ground Wate		on Date/Time -06 11:45	<u>e</u>	Receive 20-Jul-0	
MW-5	Result			*RDL			-06 11:45	<u>e</u> Analyzed	20-Jul-0	6
MW-5 SA48439-02	Result	08-2	04262.00		Ground Wate	er 17-Jul	-06 11:45		20-Jul-0	6
MW-5 SA48439-02 CAS No. Analyte(s)		08-2	04262.00		Ground Wate	er 17-Jul	-06 11:45		20-Jul-0	6
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds	<u>)B</u>	08-2	04262.00		Ground Wate	er 17-Jul	-06 11:45		20-Jul-0	6
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W	<u>)B</u>	08-2	Units		Ground Wate	er 17-Jul	-06 11:45		20-Jul-0	6
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene	<u>DB</u> ater MS	08-2	04262.00	*RDL	Dilution	er 17-Jul	-06 11:45 Prepared	Analyzed	20-Jul-0	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene	<u>0B</u> ater MS 149	08-2	Units μg/l	* <i>RDL</i>	Dilution 5	Method Ref. SW846 8260B	Prepared 26-Jul-06	Analyzed 27-Jul-06	20-Jul-0 <i>Batch</i> 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether	<u>DB</u> ater MS 149 BRL	08-2	Units μg/l μg/l	*RDL 5.0 5.0	Dilution 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	Analyzed 27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether	<u>0B</u> ater MS 149 BRL 352	08-2	Units μg/l μg/l μg/l	*RDL 5.0 5.0 5.0	Dilution 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	Analyzed 27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene	DB ater MS 149 BRL 352 12.8	08-2	Units μg/l μg/l μg/l μg/l	*RDL 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	Analyzed 27-Jul-06 " "	20-Jul-0 Batch 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene	DB ater MS 149 BRL 352 12.8 BRL	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l	*RDL 5.0 5.0 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene	DB ater MS 149 BRL 352 12.8 BRL 20.5 BRL	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene	DB ater MS 149 BRL 352 12.8 BRL 20.5	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene 95-47-6 o-Xylene	DB ater MS 149 BRL 352 12.8 BRL 20.5 BRL BRL	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 10.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene	DB ater MS 149 BRL 352 12.8 BRL 20.5 BRL BRL	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 10.0 5.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene 95-47-6 o-Xylene Surrogate recoveries:	DB ater MS 149 BRL 352 12.8 BRL 20.5 BRL BRL BRL BRL	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi ek
MW-5 SA48439-02 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 8260 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene 95-47-6 o-Xylene Surrogate recoveries: 460-00-4 4-Bromofluorobenzene	DB ater MS 149 BRL 352 12.8 BRL 20.5 BRL BRL BRL BRL	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 %	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	-06 11:45 Prepared 26-Jul-06 "	27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi ek

<u>Matrix</u> Ground Water Collection Date/Time 17-Jul-06 12:05

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile (Organic Compounds										
Volatile 0	Organic Compounds by 8260	<u>B</u>									
	by method SW846 5030 Wa										
71-43-2	Benzene	104		μg/l	1.0	1	SW846 8260B	26-Jul-06	27-Jul-06	6071635	ek
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	"
1634-04-4	Methyl tert-butyl ether	133		μg/l	1.0	1	"	"	"	"	"
91-20-3	Naphthalene	BRL		μg/l	1.0	1	"	"	"	"	"
108-88-3	Toluene	BRL		μg/l	1.0	1	"	"	"	"	"
95-63-6	1,2,4-Trimethylbenzene	1.1		μg/l	1.0	1	"	"	"	"	"
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	"
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	II .	"	"	"	"
95-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	"
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	95.0		70-130	%		"	"	"	"	"
2037-26-5	Toluene-d8	96.3		70-130	%		"	"	"	"	"
17060-07-0	1,2-Dichloroethane-d4	107		70-130	%		"	"	"	"	"
1868-53-7	Dibromofluoromethane	102		70-130	%		"	"	"	"	"
Samn	ole Identification										
MW-			Client Project # Matrix				Collectio	n Date/Tim	e	Receive	d
									_		
	3439-04			04262.00	C	Ground Water		-06 14:55	_	20-Jul-0	6
SA48		Result			*RDL				Analyzed	20-Jul-0	
SA48 CAS No.	3439-04	Result	08-2	04262.00		Ground Wate	r 17-Jul	-06 14:55		20-Jul-0	
SA48 CAS No. Volatile (Analyte(s)		08-2	04262.00		Ground Wate	r 17-Jul	-06 14:55		20-Jul-0	
CAS No. Volatile (Analyte(s) Organic Compounds	<u>B</u>	08-2	04262.00		Ground Wate	r 17-Jul	-06 14:55		20-Jul-0	
CAS No. Volatile (Analyte(s) Organic Compounds Organic Compounds by 8260	<u>B</u>	08-2	04262.00		Ground Wate	r 17-Jul	-06 14:55		20-Jul-0	
SA48 CAS No. Volatile (Volatile (Prepared	Analyte(s) Organic Compounds Organic Compounds by 8260 It by method SW846 5030 Wa	<u>B</u> ater MS	08-2	Units	*RDL	Bround Wate	r 17-Jul	-06 14:55 Prepared	Analyzed	20-Jul-0	Analyst
CAS No. Volatile (Volatile (Prepared 71-43-2	Analyte(s) Organic Compounds Organic Compounds by 8260 by method SW846 5030 Wa Benzene	<u>B</u> ater MS 536	08-2	Units	* <i>RDL</i> 50.0	Dilution 50	Method Ref. SW846 8260B	Prepared 26-Jul-06	Analyzed 27-Jul-06	20-Jul-0 <i>Batch</i> 6071635	<i>Analyst</i>
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4	Analyte(s) Organic Compounds Organic Compounds by 8260 If by method SW846 5030 Wa Benzene Ethylbenzene	<u>B</u> ater MS 536 263	08-2	Units µg/l µg/l	*RDL 50.0 50.0	Dilution 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 "	Analyzed 27-Jul-06	20-Jul-0 Batch 6071635	Analyst ek "
SA48 CAS No. Volatile (Prepared 71-43-2 100-41-4 1634-04-4	Analyte(s) Organic Compounds Organic Compounds by 8260 d by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether	B ater MS 536 263 5,620	08-2	Units μg/l μg/l μg/l	*RDL 50.0 50.0 50.0	Dilution 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """	Analyzed 27-Jul-06 "	20-Jul-0 Batch 6071635	Analyst ek "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3	Analyte(s) Organic Compounds Organic Compounds by 8260 If by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene	B ater MS 536 263 5,620 90.0	08-2	Units μg/l μg/l μg/l μg/l μg/l	*RDL 50.0 50.0 50.0 50.0	Dilution 50 50 50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """	Analyzed 27-Jul-06 " "	20-Jul-0 Batch 6071635	Analyst ek " "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	Analyte(s) Organic Compounds Organic Compounds by 8260 It by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene	B ater MS 536 263 5,620 90.0 142	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l	*RDL 50.0 50.0 50.0 50.0 50.0	50 50 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek "
CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	Analyte(s) Organic Compounds Organic Compounds by 8260 It by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene	B ater MS 536 263 5,620 90.0 142 230	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l	*RDL 50.0 50.0 50.0 50.0 50.0 50.0	50 50 50 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek " " " " " " " " " " " " " " " " " " "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	Analyte(s) Organic Compounds Organic Compounds by 8260 If by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	B ater MS 536 263 5,620 90.0 142 230 65.5	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50	50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """ """	27-Jul-06	8atch 6071635	ek " " " " " " " " " " " " " " " " " " "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Analyte(s) Organic Compounds Organic Compounds by 8260 If by method SW846 5030 Water Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene	Bater MS 536 263 5,620 90.0 142 230 65.5 1,000	08-2	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	*RDL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 100	50 50 50 50 50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """ """	27-Jul-06	8atch 6071635	ek "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Analyte(s) Organic Compounds Organic Compounds by 8260 It by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene	Bater MS 536 263 5,620 90.0 142 230 65.5 1,000	08-2	μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/l	*RDL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50	50 50 50 50 50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """ """	27-Jul-06	8atch 6071635	ek "
CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	Analyte(s) Organic Compounds Organic Compounds by 8260 It by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene	B ater MS 536 263 5,620 90.0 142 230 65.5 1,000 152	08-2	и (104262.00) Whits	*RDL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50	50 50 50 50 50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """ """	27-Jul-06	8atch 6071635	ek "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4 2037-26-5 17060-07-0	Analyte(s) Organic Compounds Organic Compounds by 8260 It by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene recoveries: 4-Bromofluorobenzene	B sater MS 536 263 5,620 90.0 142 230 65.5 1,000 152 96.0	08-2	интя шитя шитя	*RDL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50	50 50 50 50 50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 14:55 Prepared 26-Jul-06 """ """	27-Jul-06	8atch 6071635	ek "

<u>Matrix</u> Ground Water Collection Date/Time 17-Jul-06 12:45

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile (Organic Compounds										
Volatile (Organic Compounds by 8260	<u>B</u>									
Prepared	by method SW846 5030 Wa	ater MS									
71-43-2	Benzene	202		μg/l	5.0	5	SW846 8260B	26-Jul-06	27-Jul-06	6071635	ek
100-41-4	Ethylbenzene	BRL		μg/l	5.0	5	"	"	"	"	"
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	5.0	5	"	"	"	"	"
91-20-3	Naphthalene	47.2		μg/l	5.0	5	u u	"	"	"	"
108-88-3	Toluene	BRL		μg/l	5.0	5	"	"	"	"	
95-63-6	1,2,4-Trimethylbenzene	48.5		μg/l	5.0	5	"	"	"	"	"
108-67-8	1,3,5-Trimethylbenzene	18.2		μg/l	5.0	5	"	"	"	"	"
1330-20-7	m,p-Xylene	11.4		μg/l	10.0	5	"	u u	"	"	"
95-47-6	o-Xylene	BRL		μg/l	5.0	5	"	"	"	"	"
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	97.0		70-130	%		"	"	"	"	"
2037-26-5	Toluene-d8	101		70-130	%		"	"	"	"	"
17060-07-0	1,2-Dichloroethane-d4	102		70-130	%		"	"	"	"	"
1868-53-7	Dibromofluoromethane	97.0		70-130	%		"	"	"	"	"
Comp	la Idantification										
Samp	Sample Identification		Clian	t Project #		Motrice	Callastia	D.4. /Ti	_	D i	.1
DHP			CIICII	t Floject#		<u>Matrix</u>		n Date/Time	<u>e</u>	Receive	a
DUP SA48	439-06			04262.00	C	Ground Water		-06 12:45	<u>e</u>	20-Jul-0	
SA48	439-06 Analyte(s)	Result			*RDL					20-Jul-0	6
SA48 CAS No.		Result	08-2	04262.00		Ground Water	r 17-Jul	1-06 12:45		20-Jul-0	6
SA48 CAS No. Volatile (Analyte(s)		08-2	04262.00		Ground Water	r 17-Jul	1-06 12:45		20-Jul-0	6
SA48 CAS No. Volatile (Analyte(s) Organic Compounds	<u>B</u>	08-2	04262.00		Ground Water	r 17-Jul	1-06 12:45		20-Jul-0	6
SA48 CAS No. Volatile (Volatile (Prepared	Analyte(s) Organic Compounds Organic Compounds by 8260	<u>B</u>	08-2	04262.00		Ground Water	r 17-Jul	1-06 12:45		20-Jul-0	6
SA48 CAS No. Volatile (Volatile (Prepared	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa	<u>B</u> ater MS	08-2	04262.00 Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	20-Jul-0	6 Analysi
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene	<u>B</u> ater MS 186	08-2	04262.00 Units μg/l	* <i>RDL</i>	Dilution 5	Method Ref. SW846 8260B	Prepared 26-Jul-06	Analyzed 27-Jul-06	20-Jul-0 <i>Batch</i> 6071635	6 Analysi ek
SA48 CAS No. Volatile (Prepared 71-43-2 100-41-4 1634-04-4	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene	<u>B</u> ater MS 186 BRL	08-2	Units μg/l μg/l	*RDL 5.0 5.0	Dilution 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 "	Analyzed 27-Jul-06	20-Jul-0 Batch 6071635	6 Analysi ek "
SA48 CAS No. Volatile (Prepared 71-43-2 100-41-4 1634-04-4	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether	<u>B</u> ater MS 186 BRL BRL	08-2	Units μg/l μg/l μg/l	*RDL 5.0 5.0 5.0	Dilution 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 ""	Analyzed 27-Jul-06	20-Jul-0 Batch 6071635	ek
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene	B ater MS 186 BRL BRL 46.0	08-2	Units μg/l μg/l μg/l μg/l μg/l	*RDL 5.0 5.0 5.0 5.0	Dilution 5 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 """	Analyzed 27-Jul-06 " "	20-Jul-0 Batch 6071635	ek
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene	B ater MS 186 BRL BRL 46.0 BRL	08-2	Units µg/l µg/l µg/l µg/l µg/l µg/l	*RDL 5.0 5.0 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene	B ater MS 186 BRL BRL 46.0 BRL 46.0	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	Bater MS 186 BRL BRL 46.0 BRL 46.0 17.8	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene	Bater MS 186 BRL 46.0 BRL 46.0 17.8	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 10.0	Dilution 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene	Bater MS 186 BRL 46.0 BRL 46.0 17.8	08-2	Units μg/l μg/l μg/l μg/l μg/l μg/l μg/l μg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 10.0 5.0	Dilution 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek "
SA48 CAS No. Volatile (Volatile (Prepared 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene recoveries:	B ater MS 186 BRL BRL 46.0 BRL 46.0 17.8 11.5 BRL	08-2	Units µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek "
SA48 CAS No. Volatile (Volatile (71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4 2037-26-5	Analyte(s) Organic Compounds Organic Compounds by 8260 I by method SW846 5030 Wa Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene recoveries: 4-Bromofluorobenzene	Bater MS 186 BRL BRL 46.0 BRL 46.0 17.8 11.5 BRL	08-2	Units µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/	*RDL 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	Dilution 5 5 5 5 5 5 5 5 5	Method Ref. SW846 8260B	Prepared 26-Jul-06 """ """	27-Jul-06	20-Jul-0 Batch 6071635	ek "

<u>Matrix</u> Ground Water Collection Date/Time 17-Jul-06 15:50

CAS No. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile Organic Compounds										
Volatile Organic Compounds by 826	<u>0B</u>									
Prepared by method SW846 5030 W	/ater MS									
71-43-2 Benzene	91.6		μg/l	5.0	5	SW846 8260B	26-Jul-06	27-Jul-06	6071635	ek
100-41-4 Ethylbenzene	233		μg/l	5.0	5	"	"	"	"	"
1634-04-4 Methyl tert-butyl ether	BRL		μg/l	5.0	5	"	"	"	"	"
91-20-3 Naphthalene	84.6		μg/l	5.0	5	"	"	"	"	"
108-88-3 Toluene	460		μg/l	5.0	5	"	"	"	"	"
95-63-6 1,2,4-Trimethylbenzene	248		μg/l	5.0	5	"	"	"	"	"
108-67-8 1,3,5-Trimethylbenzene	66.5		μg/l	5.0	5	u u	"	"	"	"
1330-20-7 m,p-Xylene	801		μg/l	10.0	5	u u	"	"	"	"
95-47-6 o-Xylene	150		μg/l	5.0	5	"	"	"	"	"
Surrogate recoveries:										
460-00-4 4-Bromofluorobenzene	99.3		70-130 9	%		"	"	"	"	"
2037-26-5 Toluene-d8	98.3		70-130 9	%		"	"	"	"	"
17060-07-0 1,2-Dichloroethane-d4	108		70-130 9	%		"	"	"	"	"
1868-53-7 Dibromofluoromethane	104		70-130 9	%		"	"	"	"	"
Sample Identification		Clien	t Project #		<u>Matrix</u>	Collectio	on Date/Time	A	Receive	d
MW-2 ECS		Chen	t Floject#		Maura	Conectio	III Date/ I IIII	C	Receive	<u>u</u>
MW-2 ECS		08-2	04262.00	G	Fround Wate				20_Iu1_0	6
SA48439-08		08-2	04262.00	G	Ground Wate		-06 16:05	_	20-Jul-0	6
	Result	08-2 Flag	04262.00 Units	* <i>RDL</i>	Bround Wate		-06 16:05	Analyzed		
SA48439-08	Result					er 17-Jul	-06 16:05			
SA48439-08 CAS No. Analyte(s)						er 17-Jul	-06 16:05			
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds	<u>0B</u>					er 17-Jul	-06 16:05			
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W	<u>0B</u>		Units			er 17-Jul	-06 16:05		Batch	
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene	<u>0B</u> /ater MS			*RDL	Dilution	er 17-Jul	-06 16:05 Prepared	Analyzed	Batch	Analysi
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene	0 <u>B</u> /ater MS 782		Units µg/l	*RDL	Dilution 50	Method Ref. SW846 8260B	Prepared 26-Jul-06	Analyzed 27-Jul-06	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether	0 <u>B</u> /ater MS 782 450		Units µg/l µg/l	*RDL 25.0 25.0	Dilution 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	Analyzed 27-Jul-06	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether	0B /ater MS 782 450 1,610		Units µg/l µg/l µg/l	*RDL 25.0 25.0 25.0	50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	Analyzed 27-Jul-06	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene	0B /ater MS 782 450 1,610 132		Units µg/l µg/l µg/l	*RDL 25.0 25.0 25.0 25.0 25.0	50 50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	Analyzed 27-Jul-06 " "	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene	0B /ater MS 782 450 1,610 132 94.5		Units µg/l µg/l µg/l µg/l	*RDL 25.0 25.0 25.0 25.0 25.0 25.0	50 50 50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	27-Jul-06	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene	0B /ater MS 782 450 1,610 132 94.5 270 74.0		Units µg/I µg/I µg/I µg/I µg/I µg/I µg/I	*RDL 25.0 25.0 25.0 25.0 25.0 25.0 25.0	50 50 50 50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	27-Jul-06	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene	0B /ater MS 782 450 1,610 132 94.5 270		Units µg/I µg/I µg/I µg/I µg/I µg/I	*RDL 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.	50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	27-Jul-06	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene	0B /ater MS 782 450 1,610 132 94.5 270 74.0 1,210		### ##################################	*RDL 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.	50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	27-Jul-06	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene 95-47-6 o-Xylene	0B /ater MS 782 450 1,610 132 94.5 270 74.0 1,210		### ##################################	*RDL 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.	50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	27-Jul-06	Batch 6071635	<i>Analysi</i>
SA48439-08 CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene 95-47-6 o-Xylene Surrogate recoveries:	0B /ater MS 782 450 1,610 132 94.5 270 74.0 1,210 31.0		### ##################################	*RDL 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.	50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	27-Jul-06	Batch 6071635	<i>Analysi</i>
CAS No. Analyte(s) Volatile Organic Compounds Volatile Organic Compounds by 826 Prepared by method SW846 5030 W 71-43-2 Benzene 100-41-4 Ethylbenzene 1634-04-4 Methyl tert-butyl ether 91-20-3 Naphthalene 108-88-3 Toluene 95-63-6 1,2,4-Trimethylbenzene 108-67-8 1,3,5-Trimethylbenzene 1330-20-7 m,p-Xylene 95-47-6 o-Xylene Surrogate recoveries: 460-00-4 4-Bromofluorobenzene	0B /ater MS 782 450 1,610 132 94.5 270 74.0 1,210 31.0		µg/I µg/I µg/I µg/I µg/I µg/I µg/I µg/I	*RDL 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.	50 50 50 50 50 50 50 50	Method Ref. SW846 8260B	-06 16:05 Prepared 26-Jul-06 "	27-Jul-06	Batch 6071635	<i>Analysi</i>

<u>Matrix</u> Ground Water Collection Date/Time 17-Jul-06 17:15

CAS NO.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile (Organic Compounds										
Volatile (Organic Compounds by 8260	<u>B</u>									
Prepared	d by method SW846 5030 Wa	ater MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	26-Jul-06	27-Jul-06	6071635	ek
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	п	"	"	"	"
91-20-3	Naphthalene	BRL		μg/l	1.0	1	п	"	"	"	"
108-88-3	Toluene	BRL		μg/l	1.0	1	п	"	"	"	"
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	п	"	"	"	"
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	
1330-20-7	m,p-Xylene	BRL		μg/l	2.0	1	"	"	"	"	
95-47-6	o-Xylene	BRL		μg/l	1.0	1	"	"	"	"	"
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	101		70-130 9	%		н	"	"	"	
2037-26-5	Toluene-d8	96.7		70-130 9	%		"	"	"	"	"
17060-07-0	1,2-Dichloroethane-d4	105		70-130 9	%		"	"	"	"	"
1868-53-7	Dibromofluoromethane	100		70-130 9	%		"	"	"	"	"
MW-	ole Identification -27 3439-10			t Project # 04262.00	G	<u>Matrix</u> Fround Wate		n Date/Time -06 17:25	<u>e</u>	Received 20-Jul-0	
CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
	Organic Compounds										
	Organic Compounds by 8260	B									
	d by method SW846 5030 Wa										
	,										
71_43_2	Renzene			ua/l	1.0	1	SW846 8260B	26. Jul-06	27. Jul-06	6071635	ek
71-43-2 100-41-4	Benzene Ethylbenzene	BRL		μg/l	1.0	1	SW846 8260B	26-Jul-06 "	27-Jul-06	6071635	ek "
100-41-4	Ethylbenzene	BRL BRL		μg/l	1.0	1					
100-41-4 1634-04-4	Ethylbenzene Methyl tert-butyl ether	BRL BRL BRL		μg/l μg/l	1.0 1.0	1 1	w	"	"	"	"
100-41-4 1634-04-4 91-20-3	Ethylbenzene Methyl tert-butyl ether Naphthalene	BRL BRL BRL BRL		μg/l μg/l μg/l	1.0 1.0 1.0	1 1 1	"	"	"	"	"
100-41-4 1634-04-4 91-20-3 108-88-3	Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene	BRL BRL BRL BRL BRL		µg/I µg/I µg/I	1.0 1.0 1.0 1.0	1 1 1	"	" "	" "	" "	"
100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene	BRL BRL BRL BRL BRL BRL		µg/I µg/I µg/I µg/I	1.0 1.0 1.0 1.0	1 1 1	"	" "	" "	" "	" "
100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	BRL BRL BRL BRL BRL BRL BRL		ha\l ha\l ha\l ha\l	1.0 1.0 1.0 1.0 1.0	1 1 1 1	"	" "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" "
100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene	BRL BRL BRL BRL BRL BRL		µg/I µg/I µg/I µg/I	1.0 1.0 1.0 1.0	1 1 1 1 1	"	" "	" " " " " " " " " " " " " " " " " " " "	11 11 11	11 11 11 11
100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene	BRL BRL BRL BRL BRL BRL BRL		hâ\I hâ\I hâ\I hâ\I hâ\I	1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1	"	" "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "
100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene	BRL BRL BRL BRL BRL BRL BRL		hâ\I hâ\I hâ\I hâ\I hâ\I	1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1	"	" "	" " " " " " " " " " " " " " " " " " " "	11 11 11	11 11 11 11
100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene e recoveries: 4-Bromofluorobenzene	BRL BRL BRL BRL BRL BRL BRL BRL BRL		hâ\l hâ\l hâ\l hâ\l	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1	"	" "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "
100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4 2037-26-5	Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene e recoveries: 4-Bromofluorobenzene	BRL BRL BRL BRL BRL BRL BRL BRL BRL		µg/l µg/l µg/l µg/l µg/l µg/l µg/l	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1	"	" "	" " " " " " " " " " " " " " " " " " " "	11 11 11	" " " " " " " " " " " " " " " " " " " "

Sample Identification MW-102 SA48439-11

Client Project # 08-204262.00

<u>Matrix</u> Ground Water Collection Date/Time 17-Jul-06 18:20

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile (Organic Compounds										
Volatile C	Organic Compounds by 8260	<u>B</u>									
Prepared	l by method SW846 5030 Wa	ater MS									
71-43-2	Benzene	5.2		μg/l	1.0	1	SW846 8260B	26-Jul-06	27-Jul-06	6071635	ek
100-41-4	Ethylbenzene	BRL		μg/l	1.0	1	"	"	"	"	"
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	"	"	"	"	"
91-20-3	Naphthalene	8.1		μg/l	1.0	1	"	"	"	"	"
108-88-3	Toluene	1.2		μg/l	1.0	1	"	"	"	"	"
95-63-6	1,2,4-Trimethylbenzene	12.7		μg/l	1.0	1	"	"	"	"	"
108-67-8	1,3,5-Trimethylbenzene	9.3		μg/l	1.0	1	"	"	"	"	"
1330-20-7	m,p-Xylene	13.4		μg/l	2.0	1	"	"	"	"	"
95-47-6	o-Xylene	BRL		μg/l	1.0	1	"	II .	"	"	"
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	104		70-130	%		"	"	"	"	"
2037-26-5	Toluene-d8	98.3		70-130	%		"	"	"	"	"
17060-07-0	1,2-Dichloroethane-d4	112		70-130	%		"	"	"	"	"
1868-53-7	Dibromofluoromethane	105		70-130	%		"	II .	"	"	"

Volatile Organic Compounds - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6071635 - SW846 5030 Water MS										
Blank (6071635-BLK1)										
Prepared: 26-Jul-06 Analyzed: 27-Jul-06										
Benzene	BRL		ua/l	1.0						
Chlorobenzene			μg/l							
1,1-Dichloroethene	BRL		μg/l	1.0						
,	BRL		μg/l	1.0						
Ethylbenzene Matterland hat hat hat hat	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
Naphthalene	BRL		μg/l	1.0						
Toluene	BRL		μg/l	1.0						
Trichloroethene	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		μg/l	1.0						
1,3,5-Trimethylbenzene	BRL		μg/l	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	29.4		μg/l		30.0		98.0	70-130		_
Surrogate: Toluene-d8	29.6		μg/l		30.0		98.7	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.9		μg/l		30.0		110	70-130		
Surrogate: Dibromofluoromethane	30.3		μg/l		30.0		101	70-130		
LCS (6071635-BS1)										
Prepared: 26-Jul-06 Analyzed: 27-Jul-06										
Benzene	10.4		//		20.0		02.0	70 120		20
Ethylbenzene	18.4		μg/l		20.0		92.0	70-130		30
•	16.8		μg/l		20.0		84.0	70-130		30
Methyl tert-butyl ether	21.4		μg/l 		20.0		107	70-130		30
Naphthalene	18.8		μg/l		20.0		94.0	70-130		30
Toluene	17.6		μg/l		20.0		88.0	70-130		30
1,2,4-Trimethylbenzene	16.2		μg/l		20.0		81.0	70-130		30
1,3,5-Trimethylbenzene	16.7		μg/l		20.0		83.5	70-130		30
m,p-Xylene	33.2		μg/l		40.0		83.0	70-130		30
o-Xylene	17.8		μg/l		20.0		89.0	70-130		30
Surrogate: 4-Bromofluorobenzene	29.4		μg/l		30.0		98.0	70-130		
Surrogate: Toluene-d8	28.6		μg/l		30.0		95.3	70-130		
Surrogate: 1,2-Dichloroethane-d4	32.8		μg/l		30.0		109	70-130		
Surrogate: Dibromofluoromethane	30.9		μg/l		30.0		103	70-130		
LCS Dup (6071635-BSD1)										
Prepared: 26-Jul-06 Analyzed: 27-Jul-06										
Benzene	18.0		μg/l		20.0		90.0	70-130	2.20	30
Ethylbenzene	17.4		μg/l		20.0		87.0	70-130	3.51	30
Methyl tert-butyl ether	20.6		μg/l		20.0		103	70-130	3.81	30
Naphthalene	18.8		μg/l		20.0		94.0	70-130	0.00	30
Toluene	17.7		μg/l		20.0		88.5	70-130	0.567	30
1,2,4-Trimethylbenzene	16.8		μg/l		20.0		84.0	70-130	3.64	30
1,3,5-Trimethylbenzene	17.1		μg/l		20.0		85.5	70-130	2.37	30
m,p-Xylene	33.9		μg/l		40.0		84.8	70-130	2.15	30
o-Xylene	18.3				20.0		91.5	70-130	2.13	30
Surrogate: 4-Bromofluorobenzene	30.2		µg/l		30.0		101	70-130	4.11	
Surrogate: 4-Bromondoropenzene Surrogate: Toluene-d8	30.2 29.4		µg/l µg/l		30.0		98.0	70-130 70-130		
Surrogate: 1:0idene-do Surrogate: 1,2-Dichloroethane-d4	31.4		μg/l μg/l		30.0		105	70-130		
Surrogate: Dibromofluoromethane	30.2		μg/l		30.0		101	70-130		
Matrix Spike (6071635-MS1) Source:	SA48439-11									
Prepared: 26-Jul-06 Analyzed: 27-Jul-06										
Benzene	22.8		μg/l		20.0	5.25	87.8	70-130		30
Chlorobenzene	17.9		μg/l		20.0	BRL	89.5	70-130		30
1,1-Dichloroethene	16.8				20.0	BRL	84.0	70-130		30
Toluene			μg/l							
1 GIGGIIG	18.2		µg/l		20.0	1.20	85.0	70-130		30
Trichloroethene	19.3		μg/l		20.0	BRL	96.5	70-130		30

Volatile Organic Compounds - Quality Control

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6071635 - SW846 5030 Wa	ter MS									
Matrix Spike (6071635-MS1)	Source: SA48439-11									
Prepared: 26-Jul-06 Analyzed: 27-J	ul-06									
Surrogate: Toluene-d8	29.7		μg/l		30.0		99.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	33.6		μg/l		30.0		112	70-130		
Surrogate: Dibromofluoromethane	33.0		μg/l		30.0		110	70-130		
Matrix Spike Dup (6071635-MSD1)	Source: SA48439-11									
Prepared: 26-Jul-06 Analyzed: 27-J	ul-06									
Benzene	24.0		μg/l		20.0	5.25	93.8	70-130	6.61	30
Chlorobenzene	17.7		μg/l		20.0	BRL	88.5	70-130	1.12	30
1,1-Dichloroethene	12.4	QM-07	μg/l		20.0	BRL	62.0	70-130	30.1	30
Toluene	17.5		μg/l		20.0	1.20	81.5	70-130	4.20	30
Trichloroethene	15.8		μg/l		20.0	BRL	79.0	70-130	19.9	30
Surrogate: 4-Bromofluorobenzene	31.7		μg/l		30.0		106	70-130		
Surrogate: Toluene-d8	30.3		μg/l		30.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	43.2	S-GC	μg/l		30.0		144	70-130		
Surrogate: Dibromofluoromethane	37.3		μg/l		30.0		124	70-130		

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable

LCS recovery.

S-GC Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC.

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix.

<u>Matrix Spike</u>: An aliquot of a sample spiked with a known concentration of target analyte(s). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix.

<u>Method Blank</u>: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction. Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples. These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

X).
D
2
SE F

WHILE SA SGAT 301 TO SEA 27
Specia Specia Specia Standard TAT- CHAIN OF CUSTODY RECORD Page 1 of 2 Invoice To: Project No.: 08-204262-00 Site Name: 12 Pehalous Site Name: 12 Pehalous Site Name: 13 Pehalous Site Name: 13 Pehalous Site Name: 14 Pehalous
Special Handling: Mistandard TAT - 7 to 10 business days Rush TAT - Date Needed: All TATs subject to laboratory approval. Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed. 204262-00

C m	YZI [7	0	288	*						-	8			DW:= 0=0 X1=:	7 -	P		
EDD Format	E-mail to	Eav racidle	70	25	8	707	8	R	74	23	8	P25-	Lab Id:		W=Drinking Oil SW=	1=Na ₂ S2O ₃ 2 7=CH ₃ OH 8=	Project Mgr.: _	70	6
EDD Format Condition upon receipt: Bloed Ambient Condition upon receipt: Bloed Ambient Condition upon receipt: Bloed Ambient Condition upon receipt: Bloed Condition upon recei	ME-mail to [Woodard @ ECSconsult. Com	whan available to f	LK-MW	タナーベル	MW-2005	MW-19	DUP	MW-1P	I-MW	A.W-13	NW-S	Trip Blanky	Sample Id:	G=Grab C=0	DW=Drinking Water GW=Groundwater D=Oil SW= Surface Water SO=Soil X1=X2=	2=HCl 3=H ₂ SO ₄ 4=HNO ₃ 5=NaOH 8=NaHSO ₄ 9=10=	Laura Wa	ich mondy UT	5 MILLY ST
mbient □°C	ECSCONS	-	<								-	7/17/06	Date:	C=Composite		=HNO ₃ 5=Nat	Woodard	CC420	4
w	clt. com		17:25	77.15	16:05	15:50	12:45	59:41	14:55	12,05	1:45	500	Time:		WW=Wastewater SL=Sludge A=Air X3=_	OH 6=Ascorbic Acid	P.O. No.:		C
^			5								_	0	Туре			ic Acid	0.:		
((,	1	R	<								-	CW 2	Matri	-]			
THE	12	Relinquished by:	<					_			_	W	# of V	_					
-	5	shed l									,				т Glass	S	RQN:		
		by:											# of C	lear	Glass	Containers	Z.		
													# of P	lastic	c	33			
		-	<u>-</u>								_	5	803	216	Vican				
20																	Sam	Loc	Sile
10		Re											,				pler(s)	Location:	Site Name:
2		Received by:	_													Analyses:	Sampler(s): J6 / KR	4	1
8		by:														35	1	11	7
enelles		ŀ															Z	St. Johnston	V. Permishing
Car-	~												20 H	₹ 🗆	1			5	5
30/06	20/4/2	Date:								-			per MADEP (Ves	□ Provide MCP CAM Report Were all field QC requirement	tate specific re	QA Repor		St	
1/30/06/10/8	20:00	Time:											as per MADEP CAM Section 2.0? Yes No (Response required for CAM report)	☑ Provide MCP CAM Report Were all field QC requirements met	State specific reporting standards If applicable, please the below.	QA Reporting Notes: (check if needed)		State: V	

Feetaring	SPECTRUM ANALYTICAL, INC.		2
	ñ		

CHAIN OF CUSTODY RECC

Page 2 of 3

· All TATs subject to laboratory approval.	Rush TAT - Date Needed:	Standard TAT - 7 to 10 business days	Special Handling:

Min. 24-hour notification needed for rushes.

Samples disposed of after 60 days unless

100	E-mail to	Day saculta w						· .	*):	#	1-665	Lab Id:		O=Oil SW=St	7=CH ₃ OH 8=1				Report To: E	
	Lwoodasd @ ecscercal	hen available to ()					,					201-MW	Sample Id:	G=Grab C=	urface Water SC	NaHSO ₄ 9=	Lauron Woo	Chmond, VI	5	FCS HVNIBYL LECHNOLOGA	
			_		-												7/17/06	Date:	S. 4	- 11	darro
	+,63											18:20	Time:		=Wastewater	1,0				Invoice To:	
	2											0	Туре			IC ACI			*	e To:	
(-	\$.											GW.	Matrix								
H	É	Reling															-				
7	7	uished by:	uishec	uishex	uishec										~		+ ,	2			
)												# of Clear Glass		ontai	QN:					
			4													ners:					
												<	VTg	02	18						
1/2/2/		Received											-			Analys	Sampler(s):	I: A	Site Name:	Project No.: Q8-204263.00	
		by:														- CS:		5 .		8	
0					,													Jos bus	trole	otherwise	
1/2/1/2	7/17/06	Date:											as per MADEP (Yes (Response require	Were all field QC	If applicable, p	OA Repor			E	otherwise instructed.	
1/2/2	20,00	Time:					,			-			CAM Section 2.0? One One CAM report)	requirements met	porting standards Vense list below:	fineeded)		ate: VT			
		ecscosal+, Com Heinen Port	s when available to () Liboolasd Qecscosal+, Com Relinquished by: Received by: Date: 7/17/06 Reman Relinquished by: Received by: 7/17/06 7/17/06	Relinquished by: Received by: Date: Received by: 7/17/06 Received by: 7/17/06	Relinquished by: Received by: Date: Rescognition Received by: 7117/06 Rescognition Received by: 7117/06	Relinquished by: Received by: Date: Received by: 7/17/06 Received by: 7/17/06	Relinquished by: Received by: Date: Pecscosal+, Com Reinquished by: Perscosal+, Com Received by: 7117/06	Relinquished by: Received by: Date: Pecscosal+, Com Reinquished by: PR Man 111 Och Man 111	Relinquished by: Received by: Date: Pecscosal+, Com Reimpn Rys PR Man 111 Con Manning	Relinquished by: Received by: Pecscosal+, Com Received by: 7117/06	Relinquished by: Received by: Date: 711/06	Relinquished by: Received by: Received by: 71:7/06	MW-102 7/17/06 18:20 6 6W 2 3 V Relinquished by: Received by: Received by: Received by:	Sample Id: Date: Time: Type Id: Type Type Id: Type Type Id: Type Type Id: Type Type	Sample Id: Date: Time: Type Mw- 67	Drinking water tww=droundwater ww=wastewater Sw=Surface Water SO=Soil SL=Sludge A=Air	Singular of Plastic Sample Id: Sample Id: Sample Id: Sample Id: Sample Id: Date: Time: Time: Type Matrix Preservative # of Clear Glass # of Plastic Received by: Received by: Received by:	SSOO_ 2-HCI 3-H_SO_4 4-HNO_5 5-NaOH 6-Ascorbic Acid	Containers: Lawlo, Webde, Ch.	Sinch St. St	

Report Date: 03-Aug-06 17:08

Featuring HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 65 Millet Street; Suite 301 Richmond, VT 05477

Attn: Laura Woodard

Project: Northern Petroleum-St Johnsbury, VT

Final Report

☐ Re-Issued Report ☐ Revised Report

Project 08-204262.00

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA48441-01	MW-32	Ground Water	18-Jul-06 11:15	20-Jul-06 10:15
SA48441-02	MW-31	Ground Water	18-Jul-06 11:00	20-Jul-06 10:15
SA48441-03	MW-30	Ground Water	18-Jul-06 11:50	20-Jul-06 10:15
SA48441-04	MW-8	Ground Water	18-Jul-06 12:10	20-Jul-06 10:15
SA48441-05	MW-101	Ground Water	18-Jul-06 13:10	20-Jul-06 10:15
SA48441-06	MW-29	Ground Water	18-Jul-06 12:40	20-Jul-06 10:15
SA48441-07	MW-2	Ground Water	18-Jul-06 13:22	20-Jul-06 10:15
SA48441-08	MW-1R	Ground Water	18-Jul-06 14:12	20-Jul-06 10:15

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met

Please note that this report contains 9 pages of analytical data plus Chain of Custody documen(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New Jersey # MA011/MA012 New York # 11393/11840 Rhode Island # 98

USDA # S-51435 Vermont # VT-11393

i∳al/C. (Tayeh, Ph.D. President/Laboratory Director

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

ENVIRONMENTAL ANALYSES

Matrix Ground Water Collection Date/Time 18-Jul-06 11:15

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds										
Volatile O	rganic Compounds by 8260B										
Prepare	d by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	26-Jul-06	26-Jul-06	6071640	Jro
100-41-4	Ethylbenzene	BRL		μ g /1	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		µg/t	1.0	1	•	•	•	•	
91-20-3	Naphthalene	BRL		µg/ì	1.0	1	•	•	•	•	
108-88-3	Toluene	BRL		μ g /l	1.0	1	•	•	•	u	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μ g /l	1.0	1		•	•	Ħ	•
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1	•	•	•	#	
1330-20-7	m,p-Xylene	BRL		μ g/ Ι	2.0	1	•	•	•		•
95-47-6	o-Xylene	BRL		μg/l	1.0	1	•	•			
Surrogate	recoveries:	· 									
460-00-4	4-Bromofluorobenzene	90.6		70-130 ⁹	6		•	•	•	•	•
2037-26-5	Toluene-d8	108		70-130 9	6		•	•	•	#	•
17060-07-0	1,2-Dichloroethane-d4	99.4		70-130 9	6		•	•	•	=	•
1868-53-7	3-7 Dibromofluoromethane 10			70-130 %	6		•	•		•	•
Sami	ole Identification					AND THE RESERVE AND THE PARTY OF THE PARTY O					
MW			Client Project #			Matrix Collection Date/Time Received					
117 11											
SA4	8441-02		08-2	04262.00	G	round Wat	er 18-Jul	l - 06 11:00		20-Jul-()6
	8441-02 . Analyte(s)	Result	08-29	04262.00 <i>Units</i>	* <i>RDL</i>	round Wat Dilution	er 18-Jul <i>Method Ref.</i>		Analyzed		
CAS No.	- 	Result			-						
CAS No.	. Analyte(s)	Result			-						
CAS No. Volatile	Analyte(s) Organic Compounds				-						
CAS No. Volatile Volatile C Prepare	Analyte(s) Organic Compounds Organic Compounds by 8260B Organic SW846 503	0 Water MS		Units	-					Batch	
CAS No. Volatile	Analyte(s) Organic Compounds Organic Compounds by 82608 Organic Compounds O	0 Water MS BRL		Units µg/l	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare	Organic Compounds Organic Compounds by 82608 Organic Compounds Organic Comp	0 Water MS BRL BRL		Units µg/1 µg/1	* <i>RDL</i>	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4	Analyte(s) Organic Compounds Organic Compounds by 82608 Organic Compounds O	0 Water MS BRL		Units µg/l	* <i>RDL</i> 1.0 1.0	Dilution 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4	Organic Compounds Irganic Compounds by 8260B Ird by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether	0 Water MS BRL BRL 3.3		Units µg/I µg/I µg/I	*RDL 1.0 1.0 1.0	Dilution 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	Organic Compounds Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds Organic Comp	0 Water MS BRL BRL 3.3 BRL		Units µg/l µg/l µg/l µg/l	*RDL 1.0 1.0 1.0 1.0	Dilution 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds Organic Comp	0 Water MS BRL BRL 3.3 BRL BRL		Units Units Units Units	*RDL 1.0 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	Organic Compounds Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds Organic Comp	O Water MS BRL BRL 3.3 BRL BRL BRL		Units Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I	*RDL 1.0 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds Organic Comp	0 Water MS BRL BRL 3.3 BRL BRL BRL BRL		Units Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I Hg/I	*RDL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Organic Compounds Inganic Compounds by 82608 Inganic Compounds Inganic Comp	O Water MS BRL 3.3 BRL BRL BRL BRL BRL BRL		Units LD() LD()	*RDL 1.0 1.0 1.0 1.0 1.0 1.0 2.0	Dilution 1 1 1 1 1 1 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Organic Compounds Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds Organic Comp	O Water MS BRL 3.3 BRL BRL BRL BRL BRL BRL		Units LD() LD()	*RDL 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	Dilution 1 1 1 1 1 1 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	Organic Compounds Organic Compounds Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds Organic Comp	O Water MS BRL BRL 3.3 BRL BRL BRL BRL BRL BRL BRL BR		Units Hg/I	*RDL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	Dilution 1 1 1 1 1 1 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi
CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds Organic Comp	O Water MS BRL BRL 3.3 BRL BRL BRL BRL BRL BRL BRL BR		######################################	*RDL 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 6%	Dilution 1 1 1 1 1 1 1 1 1	Method Ref.	Prepared	Analyzed	Batch	Analysi

Client Project # 08-204262.00

Matrix Ground Water Collection Date/Time 18-Jul-06 11:50 Received 20-Jul-06

C/15 / 10.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds							<u></u> ,			
Volatile O	rganic Compounds by 8260B										
Prepare	d by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μ g /î	1.0	1	SW846 8260B	26-Jul-06	26-Jul-06	6071640	Jro
100-41-4	Ethylbenzene	BRL		μg/1	1.0	1	•	•	•		•
1634-04-4	Methyl tert-butyl ether	3.8		μ g/l	1.0	1	•	•	•	*	•
91-20-3	Naphthalene	BRL		μ g /l	1.0	1	•	•	•	п	•
108-88-3	Toluene	BRL		µg/l	1.0	1	•	•			•
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	•	•	•	•	
108-67-8	1,3,5-Trimethylbenzene	BRL		μ g /l	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μ g /l	2.0	1	•	•	•		•
95-47-6	o-Xylene	BRL		µg/ l	1.0	1	•	•	•	•	•
Surrogate	recoveries:									-	
460-00-4	4-Bromofluorobenzene	92.4		70-130	%		•	•	•	•	٠
2037-26-5	Toluene-d8	107		70-130	%		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	101		70-130	%			•	4	*	•
1868-53-7	Dibromofluoromethane	103		70-130	%		•	•	•	•	•
Sami	ple Identification										
			Clien	t Project#		<u>Matrix</u>	Collectio	n Date/Tin	ne	Receive	ed :
MW	-X										
MW SA4	-8 8441-04			04262.00		round Wat		-06 12:10		20-Jul-(
SA4		Result						-06 12:10		20-Jul-()6
SA4	8441-04	Result	08-2	04262.00	G	round Wat	er 18-Jul	-06 12:10		20-Jul-()6
SA43 CAS No. Volatile	8441-04 . Analyte(s)	Result	08-2	04262.00	G	round Wat	er 18-Jul	-06 12:10		20-Jul-()6
CAS No. Volatile	Analyte(s) Organic Compounds		08-2	04262.00	G	round Wat	er 18-Jul	-06 12:10		20-Jul-()6
CAS No. Volatile	Analyte(s) Organic Compounds Organic Compounds by 8260B	0 Water MS	08-2	04262.00 <i>Units</i>	G	round Wat	er 18-Jul	-06 12:10		20-Jul-()6
CAS No. Volatile Volatile C	Analyte(s) Organic Compounds Organic Compounds Organic Compounds by 8260B Organic Office SW846 503 Benzene		08-2	Units	* <i>RDL</i>	round Wat	er 18-Jul	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
CAS No. Volatile Volatile O Prepare 71-43-2	Analyte(s) Organic Compounds Organic Compounds by 8260B od by method SW846 503 Benzene Ethylbenzene	30 Water MS 5.0	08-2	04262.00 <i>Units</i>	**************************************	Dilution	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
CAS No. Volatile Volatile C Prepare 71-43-2- 100-41-4	Analyte(s) Organic Compounds Organic Compounds by 8260B organic Compounds organic Co	5.0 BRL	08-2	Units µg/l µg/l	***RDL 1.0 1.0	Dilution 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
CAS No. Volatile Volatile C Prepare 71-43-2- 100-41-4 1634-04-4	Analyte(s) Organic Compounds Organic Compounds by 8260B od by method SW846 503 Benzene Ethylbenzene	30 Water MS 5.0 BRL 38.6	08-2	Units Units	1.0 1.0 1.0	Dilution 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
SA43 CAS No. Volatile Corprepare 71-43-2+ 100-41-4 1634-04-4 91-20-3	Analyte(s) Organic Compounds Organic Compounds by 8260B Organic Compounds O	5.0 Water MS 5.0 BRL 38.6 BRL	08-2	Units Units	1.0 1.0 1.0 1.0	Dilution 1 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
SA43 CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	Analyte(s) Organic Compounds Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds O	5.0 Water MS 5.0 BRL 38.6 BRL BRL	08-2	Units Units	1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
SA43 CAS No. Volatile C Prepare 71-43-2- 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	Analyte(s) Organic Compounds Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds O	50 Water MS 5.0 BRL 38.6 BRL BRL BRL	08-2	Units Units Units	1.0 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
SA43 CAS No. Volatile C Prepare 71-43-2- 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	Analyte(s) Organic Compounds Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds O	5.0 Water MS 5.0 BRL 38.6 BRL BRL BRL BRL	08-2	Units Units Units	1.0 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analysi
SA43 CAS No. Volatile Corprepare 71-43-2+ 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Analyte(s) Organic Compounds Organic Compounds Organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds by 8260B organic Compounds O	5.0 Water MS 5.0 BRL 38.6 BRL BRL BRL BRL BRL	08-2	Units Units Units	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analysi
SA43 CAS No. Volatile Corprepare 71-43-2+ 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Analyte(s) Organic Compounds Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds O	5.0 Water MS 5.0 BRL 38.6 BRL BRL BRL BRL BRL	08-2	Units Units Units	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	Analyte(s) Organic Compounds Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds O	5.0 Water MS 5.0 BRL 38.6 BRL BRL BRL BRL BRL BRL BRL	08-2	Units Units Units	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analys
CAS No. Volatile Corporer 71-43-2- 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	Analyte(s) Organic Compounds Organic Compounds Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds Organic Co	5.0 Water MS 5.0 BRL 38.6 BRL BRL BRL BRL BRL BRL BRL	08-2	Units Un	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 82608	-06 12:10 Prepared	Analyzed	20-Jul-(Analysi

Client Project # 08-204262.00

Matrix Ground Water Collection Date/Time 18-Jul-06 13:10 Received 20-Jul-06

Chibito	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	30 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	26-Jul-06	26-Jul-06	6071640	Jro
100-41-4	Ethylbenzene	BRL		μ g /1	1.0	1	•	•	•	•	•
1634-04-4	Methyl tert-butyl ether	BRL		μд/1	1.0	1	•	•	•	•	•
91-20-3	Naphthalene	BRL		μ <u>σ</u> /l	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μ g /1	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	•	•	•	•	*
108-67-8	1,3,5-Trimethylbenzene	BRL		μg/l	1.0	1		•	•	•	•
1330-20-7	m,p-Xylene	BRL		μ g /I	2.0	1		•	•	•	•
95-47-6	o-Xylene	BRL		μg/I	1.0	1	•	•		•	•
Surrogate	recoveries:							•			
450-00-4	4-Bromofluorobenzene	93.0		70-130	%		•	•	•	•	•
2037-26-5	Toluene-d8	108		70-130	%		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	101		70-130	%		•	•	•	•	•
1868-53-7	Dibromofluoromethane	105		70-130	%		•	•	•	•	. •
Sami	ple Identification										
								_ (_)			_
				t Project #		Matrix		n Date/Tin	_	Receive	
MW				t Project # 04262.00		<u>Matrix</u> round Wat		<u>n Date/Tim</u> I-06 12:40	_	<u>Receive</u> 20-Jul-0	
MW SA4	-29	Result								20-Jul-0	6
SA4	-29 8441-06	Result	08-2	04262.00	G	round Wat	er 18-Jul	-06 12:40		20-Jul-0	6
SA4 CAS No. Volatile	-29 8441-06 . Analyte(s)	Result	08-2	04262.00	G	round Wat	er 18-Jul	-06 12:40		20-Jul-0	6
MW SA4 CAS No Volatile Volatile C	-29 8441-06 . <i>Analyte(s)</i> Organic Compounds		08-2	04262.00	G	round Wat	er 18-Jul	-06 12:40		20-Jul-0	6
MW SA4 CAS No Volatile Volatile C	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608		08-2	04262.00 Units	G	round Wat	er 18-Jul	-06 12:40	Analyzed	20-Jul-0	6
MW SA4 CAS No. Volatile Volatile C Prepare	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608	30 Water MS	08-2	Units	* <i>RDL</i>	Dilution	er 18-Jul	Prepared	Analyzed	20-Jul-0	6 Analyst
CAS No. Volatile Volatile C Prepare 71-43-2	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 and by method SW846 503 Benzene Ethylbenzene	30 Water MS BRL	08-2	04262.00 Units	*RDL	Dilution	er 18-Jul <i>Method Ref.</i> SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
CAS No. Volatile Colorida Colo	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether	30 Water MS BRL BRL	08-2	Units µg/l µg/l µg/l	*RDL	Dilution 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
CAS No. Volatile Volatile O Prepare 71-43-2 100-41-4 1634-04-4	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 and by method SW846 503 Benzene Ethylbenzene	30 Water MS BRL BRL 10.0	08-2	Units µg/1 µg/1	*RDL 1.0 1.0 1.0	Dilution 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
CAS No. Volatile Volatile OPrepare 71-43-2 100-41-4 1634-04-4 91-20-3	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 and by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene	BO Water MS BRL BRL 10.0 BRL	08-2	Units pg/l pg/l	*RDL 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
MW SA41 CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 Organic Compounds Organic Compo	30 Water MS BRL BRL 10.0 BRL 8RL	08-2	Units pg/l pg/l pg/l pg/l pg/l pg/l	1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
MW SA4: CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 Ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	BO Water MS BRL BRL 10.0 BRL BRL BRL BRL	08-2	Units pg/l pg/l pg/l pg/l pg/l pg/l pg/l pg/l pg/l	1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
CAS No. Volatile Colored Color	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 Organic Compounds Organic Compo	BO Water MS BRL BRL 10.0 BRL BRL BRL BRL BRL	08-2	Units pg/l pg/l pg/l pg/l pg/l pg/l pg/l pg/l	1.0 1.0 1.0 1.0 1.0 1.0	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
MW SA41 CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 organic Compounds organic Compou	BO Water MS BRL 10.0 BRL 8RL BRL BRL BRL	08-2	Units pg/l pg/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
MW SA41 CAS No. Volatile Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 Ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene	BO Water MS BRL 10.0 BRL 8RL BRL BRL BRL	08-2	Units pg/l pg/l	1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
CAS No. Volatile Corprepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds by 82608 Organic Compounds Orga	BO Water MS BRL BRL 10.0 BRL BRL BRL BRL BRL BRL BRL BRL	08-2	Units Lg/l Lg/l	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst
MW SA4: CAS No. Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	-29 8441-06 Analyte(s) Organic Compounds Organic Compounds by 82608 Organic Compounds Organic Compo	BO Water MS BRL BRL 10.0 BRL BRL BRL BRL BRL BRL BRL	08-2	Units Units Units Units Units Units Units Units	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method Ref. SW846 8260B	Prepared	Analyzed	20-Jul-0	6 Analyst

Client Project # 08-204262.00

Matrix Ground Water Collection Date/Time 18-Jul-06 13:22

Received 20-Jul-06

CAS No.	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds										
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	58.4		μg/Ι	1.0	1	SW846 8260B	28-Jul-06	28-Jul-06	6071849	Jro
100-41-4	Ethylbenzene	37.2		µg/l	1.0	1	и	đ	*	•	•
1634-04-4	Methyl tert-butyl ether	8RL		μ <u>α</u> /1	1.0	1	•	4	*	•	•
91-20-3	Naphthalene	12.4		μg/l	1.0	1	•	a	•	•	•
108-88-3	Toluene	8.4		μg/l	1.0	1	•	*	•	•	•
95-63-6	1,2,4-Trimethylbenzene	40.0		µg∕l	1.0	1	•		•	•	•
108-67-8	1,3,5-Trimethylbenzene	12.0		μg/l	1.0	1	•	•	•	•	
1330-20-7	m,p-Xylene	63.4		μ g /1	2.0	1		•	•	•	•
95-47-6	o-Xylene	2.4		μ g /1	1.0	1	•	•	•	4	•
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	99.4		70-130	%		•	•	•	4	•
2037-26-5	Toluene-d8 .	106		70-130	%		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	97.0		70-130	%		•	•		•	•
1868-53-7	Dibromofluoromethane	99.4		70-130	%		•	•	•	•	•
Sam	ple Identification										
MW				t Project #	_	<u>Matrix</u>		n Date/Tin		Receive	
	8441-08		08-2	04262.00	G	round Wat	er 18-Jul	-06 14:12		20-Jul-(16
CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
	* ''					Dimiton			7111117 CCU		
Volatile	Organic Compounds					Dimitor			7111419 CC4		
						Diminon			7111119 404		
Volatile C	Organic Compounds	0 Water MS				Diminu			711111 Jeu		
Volatile C	Organic Compounds Organic Compounds by 8260B	0 Water MS BRL		μ g /l	1.0	1	SW846 8260B	26-Jul-06	27-Jul-06		Jro
Volatile C Prepare	Organic Compounds Organic Compounds by 8260B and by method SW846 503 Benzene				1.0 1.0			<u>-</u>	•		Jro •
Volatile C Prepare 71-43-2	Organic Compounds Organic Compounds by 8260B ed by method SW846 503 Benzene Ethylbenzene	8RL		µд∕1		1		<u>-</u>	•		Jro •
Volatile C Prepare 71-43-2 100-41-4	Organic Compounds Organic Compounds by 8260B ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether	BRL BRL			1.0	1 1		<u>-</u>	•		Jro •
Volatile C Prepare 71-43-2 100-41-4 1634-04-4	Organic Compounds Organic Compounds by 8260B ed by method SW846 503 Benzene Ethylbenzene	BRL BRL BRL		h д /J	1.0 1.0	1 1 1		<u>-</u>	•		Jro • •
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3	Organic Compounds Organic Compounds by 8260B ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene	BRL BRL BRL BRL		hā\J hā\J	1.0 1.0 1.0	1 1 1 1		<u>-</u>	•		Jro • •
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3	Organic Compounds Organic Compounds by 8260B ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene	BRL BRL BRL BRL		12/l 12/l 12/l	1.0 1.0 1.0 1.0	1 1 1 1		<u>-</u>	•		Jro • •
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6	Organic Compounds Organic Compounds by 8260B ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	BRL BRL BRL BRL BRL		1931 1931 1931 1931	1.0 1.0 1.0 1.0 1.0	1 1 1 1		<u>-</u>	•		Jro
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8	Organic Compounds Organic Compounds by 8260B ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene	BRL BRL BRL BRL BRL BRL		(4) (4) (4) (4) (4) (4)	1.0 1.0 1.0 1.0 1.0	1 1 1 1 1		<u>-</u>	•		Jro
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Organic Compounds Organic Compounds by 8260B ed by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene	BRL BRL BRL BRL BRL BRL BRL		(4) (4) (4) (4) (4) (4)	1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1		<u>-</u>	•		Jro
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6	Organic Compounds Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds by 8260B Organic Compounds Organic Comp	BRL BRL BRL BRL BRL BRL BRL		(4) (4) (4) (4) (4) (4)	1.0 1.0 1.0 1.0 1.0 1.0 2.0	1 1 1 1 1 1		<u>-</u>	•		Jro
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-68-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate	Organic Compounds Organic Compounds by 8260B and by method SW846 503 Benzene Ethylbenzene Methyl tert-butyl ether Naphthalene Toluene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene m,p-Xylene o-Xylene	BRL BRL BRL BRL BRL BRL BRL BRL		194) 194) 194) 194) 194) 194)	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1		<u>-</u>	•		Jro
Volatile C Prepare 71-43-2 100-41-4 1634-04-4 91-20-3 108-88-3 95-63-6 108-67-8 1330-20-7 95-47-6 Surrogate 460-00-4	Organic Compounds Organic Compounds by 8260B Organic Compounds Organic Comp	BRL BRL BRL BRL BRL BRL BRL		19/1 19/1 19/1 19/1 19/1 19/1 19/1	1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0	1 1 1 1 1 1		<u>-</u>	•		Jro

A malasta/a	Danult	Elec	Unita	*RDL ·	Spike	Source	%REC	%REC	RPD	RPD
Analyte(s)	Result	Flag	Units	*KDL	Level	Result	%KEU	Limits	KPD	Limit
Batch 6071640 - SW846 503	0 Water MS									
Blank (6071640-BLK1)										
Prepared & Analyzed: 26-Jul-06										
Benzene	BRL		μg/l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL.		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/î	1.0						
Naphthalene	BRL		μg/\	1.0						
Toluene	BRL		μg/l	1.0						
Frichloroethene	BRL		μ g /l	1.0						
1,2,4-Trimethylbenzene	BRL		μ g /l	1.0						
,3,5-Trimethylbenzene	BRL		μ g /l	1.0						
n,p-Xylene	BRL		µg/П	2.0						
-Xylene	BRL		μg/l	1.0						
Surrogate: 4-Bromofluorobenzene	47.8		µg/l		50.0		95.6	70-130		
Surrogate: Toluene-d8	52.6		μg/l		50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4	52.5 50.0		µg/l		50.0		105	70-130		
Surrogate: Dibromofluoromethane	53.0		h@/l		50.0		106	70-130		
LCS (6071640-BS1)										
Prepared & Analyzed: 26-Jul-06										
Benzene	19.8		µg/l		20.0		99.0	70-130		30
Ethylbenzene	20.0		μg/l		20.0		100	70-130		30
Methyl tert-butyl ether	22.6		μ g/ 1		20.0		113	70-130		30
Vaphthalene	21.7		μg/l		20.0		108	70-130		30
Toluene	20.2		ha\J		20.0		101	70-130		30
1,2,4-Trimethylbenzene	21.6		μg/l		20.0		108	70-130		30
1,3,5-Trimethylbenzene	20.7		μg/i		20.0		104	70-130		30
m,p-Xylene	42.2		μg/l		40.0		106	70-130		30
o-Xylene	20.6		μg/l		20.0		103	70-130		30
Surrogate: 4-Bromofluorobenzene	50.8		<u>μg/</u> l		50.0		102	70-130		
Surrogate: Toluene-d8	52.0		μg/l		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.1		μ g/ l		50.0		94.2	70-130		
Surrogate: Dibromofluoromethane	49.4		μg/î		50.0		98.8	70-130		
LCS Dup (6071640-BSD1)										
Prepared & Analyzed: 26-Jul-06										
Benzene	18.8		uofl		20.0		94.0	70-130	5.18	30
Ethylbenzene	19.2		hâ\J		20.0		96.0	70-130	4.08	30
Methyl tert-butyl ether	21.9.		ha\ ha\		20.0		110	70-130	2.69	30
Naphthalene	21.9.		μg/l ug/l		20.0		104	70-130	3.77	30
Vapriolalene Toluene	20.8 19.2		μg/l μα/l		20.0		96.0	70-130	5.08	30
1,2,4-Trimethylbenzene	21.3		h∂\] hô\J		20.0		106	70-130	1.87	30
1,3,5-Trimethylbenzene	20.5		µg∕l µg/l		20.0		102	70-130	1.94	30
m,p-Xylene	40.8		h ā ∖լ հ&ո		40.0		102	70-130	3.85	30
o-Xylene	20.3		μ g /l		20.0		102	70-130	0.976	30
Surrogate: 4-Bromofluorobenzene	51.7		<u>ьал</u> h д у		50.0		103	70-130		- -
Surrogate: Toluene-d8	51.9		hā\J		50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.0		μg/l		50.0		98.0	70-130		
Surrogate: Dibromofluoromethane	49.6		µg/l		50.0		99.2	70-130		
Matrix Spike (6071640-MS1)	Source: SA48434-01									
Prepared & Analyzed: 26-Jul-06	DOLLOS OCTOTOT VI									
Prepareo a Analyzeo: 26-Juroo Benzene	47.0		ug A		20.0	BRL	85.0	70-130		30
Benzena Chlorobenzena	17.0		μg/l		20.0 20.0	BRL	85.0 88.5	70-130 70-130		30
	17.7		µg/l		20.0	BAL	98.5	70-130		30
1,1-Dichloroethene Toluene	19.7		µg/l			BRL	98.5 90.0	70-130 70-130		30
Trichloroethene	18.0		µg∕l		20.0 20.0	BRL	90.0 89.0	70-130 70-130		30
LUCHOLOGRICIA	17.8 45.5		µд∕1		50.0	DNL	91.0	70-130		50

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6071640 - SW846 5030) Water MS									
Matrix Spike (6071640-MS1)	Source: SA48434-01									
Prepared & Analyzed: 26-Jul-06			=							
Surrogate: Toluene-d8	53.0		ha\I		50.0		106	70-130		
Surrogate: 1,2-Dichloroethane-d4	49.1		μg/l		50.0		98.2	70-130		
Surrogate: Dibromofluoromethane	51.2	•	µg/l		50.0		102	70-130		
Matrix Spike Dup (6071640-MSD1)	Source: SA48434-01									
Prepared & Analyzed: 26-Jul-06										
Benzene	17.8		h g /l		20.0	BRL	89.0	70-130	4.60	30
Chlorobenzene	18.7		h g /l		20.0	BRL	93.5	70-130	5.49	30
1,1-Dichloroethene	19.1		μg/l		20.0	BRL	95.5	70-130	3.09	30
Totuene	19.0		h g /l		20.0	BRL	95.0	70-130	5.41	30
Trichloroethene	18.7		μg/l		20.0	BRL.	93.5	70-130	4.93	30
Surrogate: 4-Bromoffuorobenzene	46.3		μg/l		50.0		92.6	70-130		
Surrogate: Toluene-d8	53.2		µg/l		50.0		106	70-130		
Surrogate: 1,2-Dichloroethane-d4	50.4		µg/l		50.0		101	70-130		
Surrogate: Dibromofluoromethane	50.4		µg/l		50.0		101	70-130		
Batch 6071849 - SW846 5030	0 Water MS									
Blank (6071849-BLK1)										
Prepared & Analyzed: 28-Jul-06										
Benzene	BRL		μ g /l	1.0						
Chlorobenzene	BRL		μg/l	1.0						
1,1-Dichloroethene	BRL		μg/l	1.0						
Ethylbenzene	BRL		μg/l	1.0						
Methyl tert-butyl ether	BRL		μg/l	1.0						
Naphthalene	BRL		μg/l	1.0						
Toluene	BRL		µg∕l	1.0						
Trichloroethene	BRL		μg/l	1.0						
1,2,4-Trimethylbenzene	BRL		µg/l	1.0						
1,3,5-Trimethylbenzene	BRL			1.0						
m,p-Xylene	BRL		µg/l	2.0						
o-Xylene	BRL		µg/l	1.0						
			µg/l	1.0	50.0		94.8	70-130		
Surrogate: 4-Bromofluorobenzene	47.4 53.2		µg∕l		50.0 50.0		106	70-130		
Surrogate: Toluene-d8 Surrogate: 1,2-Dichloroethane-d4	52.5		hð\j hð\j		50.0		105	70-130		
Surrogate: Dibromofluoromethane	52.6		hā\J		50.0		105	70-130		
LCS (6071849-BS1)										
Prepared & Analyzed: 28-Jul-06										
Benzene	20.1		unil		20.0		100	70-130		30
Ethylbenzene	21.4		µg/l		20.0		107	70-130		30
Methyl tert-butyl ether	22.2		μg/l μο/l		20.0		111	70-130		30
Naphthalene			μg/l		20.0		104	70-130		30
Toluene	20.9		μg/l		20.0		104	70-130 70-130		30
1,2,4-Trimethylbenzene	21.1		μg/l		20.0		116	70-130		30
	23.1	*	µg/l				112	70-130		30
1,3,5-Trimethylbenzene	22.4		µg/l		20.0		112	70-130 70-130		30
m,p-Xylene	44.8		µg∕l		40.0			70-130 70-130		30
o-Xylene	22.0		μg/l		20.0		110			30
Surrogate: 4-Bromofluorobenzene	53.2		µg/l		50.0 50.0		106 103	70-130 70-130		
Surrogate: Toluene-d8	51.6 47.6		μg/l		50.0 50.0		95.2	70-130 70-130		
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Dibromofluoromethane	47.6 48.9		μg/l μg/l		50.0 50.0		97.8	70-130		
LCS Dup (6071849-BSD1)	40.5		ישא		50.0		57.0			
Prepared & Analyzed: 28-Jul-06										
Benzene	19.2		μg/l		20.0		96.0	70-130	4.08	30
Ethylbenzene	19.5		μg/l		20.0		97.5	70-130	9.29	30
	, , , ,		. 4				110	70-130	0.905	30

					Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 6071849 - SW846 5030) Water MS									
LCS Dup (6071849-BSD1)										
Prepared & Analyzed: 28-Jul-06										
Naphthalene	20.2		µg/l		20.0		101	70-130	2.93	30
Toluene	19.4		µg/l		20.0		97.0	70-130	8.87	30
1,2,4-Trimethylbenzene	20.8		μg/l		20.0		104	70-130	10.9	30
1,3,5-Trimethylbenzene	20.1		μg/l		20.0		100	70-130	11.3	30
m,p-Xylene	40.5		μg/l		40.0		101	70-130	10.3	30
o-Xylene	20.3		hā\l		20.0		102	70-130	7.55	30
Surrogate: 4-Bromofluorobenzene	51.9		hā\		50.0		104	70-130		
Surrogate: Toluene-d8	50.9		hā\l ,		50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.9		μg/l		50.0		95.8	70-130		
Surrogate: Dibromofluoromethane	49.6		µg/l		50.0		<i>99.2</i>	70-130		
Matrix Spike (6071849-MS1)	Source: SA48441-07									
Prepared & Analyzed: 28-Jul-06										
Benzene	74.9		μg/l		20.0	58.4	82.5	70-130		30
Chlorobenzene	19.0		μg/l		20.0	BRL	95.0	70-130		30
1,1-Dichloroethene	18.0		μg/l		20.0	BRL	90.0	70-130		30
Toluene	27.3		μg/l		20.0	8.45	94.2	70-130		30
Trichloroethene	18.5		μg/l		20.0	BRL	92.5	70-130		30
Surrogate: 4-Bromofluorobenzene	51.0		μg/l		50.0		102	70-130		
Surrogate: Toluene-d8	53.3		μg/l		50.0		107	70-130		
Surrogate: 1,2-Dichloroethane-d4	47.7		μg/l		50.0		95.4	70-130		
Surrogate: Dibromofluoromethane	48.8		μg/l		50.0		97.6	70-130		
Matrix Spike Dup (6071849-MSD1)	Source: SA48441-07									
Prepared & Analyzed: 28-Jul-06										
Benzene	69.2	QM-07	μ g/ 1		20.0	58.4	54.0	70-130	41.8	30
Chlorobenzene	18.6		μ g/ Ι		20.0	8AL	93.0	70-130	2.13	30
1,1-Dichloroethene	17.8		μ g/ 1		20.0	BRL	89.0	70-130	1.12	30
Toluene	26.6		μ g/ 1		20.0	8.45	90.8	70-130	3.68	30
Trichloroethene	18.1		μ g/ 1		20.0	BRL	90.5	70-130	2.19	30
Surrogate: 4-Bromofluorobenzene	50.3		<u>μ</u> g/l		50.0		101	70-130		
Surrogate: Toluene-d8	53.9		μ g/ l		50.0		108	70-130		
Surrogate: 1,2-Dichloroethane-d4	48.1		μ g /l		50.0		96.2	70-130		
Surrogate: Dibromofluoromethane	48.8		μ g/ 1		50.0		97.6	70-130		

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.

Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

BRL

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analytés). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

CHAIN OF CLISTODY RECORD

Special l	
ial H	
Handling	
ing:	

Duck TAT Data Mondadi	■ Standard TAT - 7 to 10 business day	Special Handling:
	day	

☐ Rush IAI - Date Needed: _

		A OT CONTONT		All TATs subject to laboratory approval.
SPECTRUM ANALYTICAL, INC. $Featuring$		Pagelof	· Samp	Samples disposed of after 60 days unless
Report To: 6CS	Invo	Invoice Fo:	Project No.: 08-204,21,00	111,00
	Suite 301	Fig. 1.	Site Name: Wortharn Petrolium	ho low
Rich road M	CCH20	110 115 HOL OPARITI		State: V
Project Mgr.: Leves woodsed		P.O. No.: RQN:	Sampler(s): 16 / KR	
2=HCl 3=H ₂ SO ₄ 3= N _a HSO ₄ 9=	4=HNO ₃ 5=NaOH 6=Asco	6=Ascorbic Acid Containers:	Analyses:	OA Reporting Notes: (check if needed)
DW=Drinking Water GW=Groundwater O=Oil SW= Surface Water SO=Soil X1=X2=	roundwater WW=Wastewater SO=Soil SL=Sludge A=Air X3=	Vials Glass Glass	Norm	State specific reporting standards If applicable, please list below.
G=Grab C=	C=Composite	OA Medical	אר	☐ Provide MCP CAM Report Were all field QC requirements met
Lab Id: Sample Id:	Date: Time:	Type Matri Prese # of V # of A # of C	803	as per MADEP CAM Section 2.0? \(\subseteq \text{ Yes} \text{ No} \) (Response required for CAM report)
TE-MW 10-111/2	7/18/06 11:15	6 CW 7 3	<	
IS-MW CO-	11500			
B MW-30	1:50			
8-MW Na	0ا.در			
10 -MW SQ	13:10			
	12:40			
CG WW-CG	13:23			
1 700 MW-1R	V 14:12	4	3	
☐ Fax results when available to (,	Relinquished by:	Received by:	\perp
N E-mail to Weodard @	Easconult com	Mrsc		00:91 10/8/11
EDD Format		Tack	Chaules	1 7/20/06 10/5
Condition upon receipt: Elced .	□ Ambient □°C ン	l	(

ロードで図む

X]=

Report Date: 14-Aug-06 17:03

SPECTRUM ANALYTICAL, INC.

Featuring HANIBAL TECHNOLOGY

Laboratory Report

Environmental Compliance Services 65 Millet Street; Suite 301 Richmond, VT 05477

Attn: Laura Woodard

Project: Northern Petroleum-St Johnsbury, VT

Project 08-204262

Laboratory ID	Client Sample ID	<u>Matrix</u>	Date Sampled	Date Received
SA49007-01	Trip Blank	Ground Water	31-Jul-06 08:45	02-Aug-06 10:25
SA49007-02	MW 17	Ground Water	31-Jul-06 13:40	02-Aug-06 10:25
SA49007-03	MW 18	Ground Water	31-Jul-06 15:05	02-Aug-06 10:25

I attest that the information contained within the report has been reviewed for accuracy and checked against the quality control requirements for each method. These results relate only to the sample(s) as received.

All applicable NELAC requirements have been met

Please note that this report contains 8 pages of analytical data plus Chain of Custody documen(s).

This report may not be reproduced, except in full, without written approval from Spectrum Analytical, Inc

Massachusetts Certification # M-MA138/MA1110 Connecticut # PH-0777 Florida # E87600/E87936 Maine # MA138 New Hampshire # 2538/2972 New Jersey # MA011/MA012 New York # 11393/11840 Rhode Island #98 USDA # S-51435

Vermont # VT-11393

C. Tayeh, Ph.D. President/Laboratory Director

Authorized

Spectrum Analytical, Inc. is a NELAC accredited laboratory organization and meets NELAC testing standards. Use of the NELAC logo however does not insure that Spectrum is currently accredited for the specific method indicated. Please refer to our "Quality" webpage at www.spectrum-analytical.com for a full listing of our current certifications.

ENVIRONMENTAL ANALYSES

Client Project # 08-204262

Matrix Ground Water Collection Date/Time 31-Jul-06 08:45 Received 02-Aug-06

CAS No	. Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analyst
Volatile	Organic Compounds							·	•		
Volatile C	Organic Compounds by 8260B										
Prepare	ed by method SW846 503	0 Water MS									
71-43-2	Benzene	BRL		μg/l	1.0	1	SW846 8260B	08-Aug-06	09-Aug-06	6080562	mar
100-41-4	Ethylbenzene	BRL		μ g/ Ι	1.0	1	•	•		•	•
1634-04-4	Methyl tert-butyl ether	BRL		μg/l	1.0	1	• `	•	•		1
91-20-3	Naphthalene	BRL		μ g/ l	1.0	1	•	•	•	•	•
108-88-3	Toluene	BRL		μ g/ Ι	1.0	1	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	BRL		μg/l	1.0	1	•	•	•	•	
108-67-8	1,3,5-Trimethylbenzene	BRL		μ g /l	1.0	1	•	•	•	•	•
1330-20-7	m,p-Xylene	BRL		μ g/ l	2.0	1	•	•		•	•
95-47-6	o-Xylene	BAL		μ g/l	1.0	1	•		•	•	•
Surrogate	recoveries:	· · ·									
460-00-4	4-Bromofluorobenzene	92.6		70-130	%		•	•	•	•	•
2037-26-5	Toluene-d8	98.6		70-130	%		•	•	•	•	
17060-07-0	1,2-Dichloroethane-d4	115		70-130	%		•	•	•	•	•
1868-53-7	Dibromofluoromethane	101		70-130	%		•	•	•	•	

Client Project # 08-204262

Matrix Ground Water Collection Date/Time 31-Jul-06 13:40 Received 02-Aug-06

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analys
Volatile	Organic Compounds	<u> </u>									
	rganic Compounds by 8260B										
—- Ргераге	d by method SW846 503	0 Water MS									
71-43-2	Benzene	1,450		μ g/ 1	5.0	5	SW846 8260B	08-Aug-06	09-Aug-06	6080562	mar
100-41-4	Ethylbenzene	549		μg/l	5.0	5	•		ю		•
1634-04-4	Methyl tert-butyl ether	14.0		μg/l	5.0	5	•	•	•	•	•
91-20-3	Naphthalene	364		μ g /l	5.0	5	•	•	•	•	•
108-88-3	Toluene	1,570	E	μ g /l	5.0	5	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	819		μ <u>α</u> /Ι	5.0	5	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	242		μg/l	5.0	5		•	•	•	•
1330-20-7	m,p-Xylene	2,380	E	μg/l	10.0	5		•	•	*	•
95-47-6	o-Xylene	632		μ g/ 1	5.0	5	•	•	•	•	•
Surrogate	recoveries:			-			·				
460-00-4	4-Bromofluorobenzene	94.4		70-130	%		•	•	•	•	•
2037-26-5	Toluene-d8	102		70-130	%		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	114		70-130	%		•	•	•	•	•
1868-53-7	Dibromofluoromethane	99.6		70-130	%		•	•	u		•
Volatile O	rganic Compounds by 8260B								SA49007-	02RE1	
	ed by method SW846 503	0 Water MS									
108-88-3	Toluene	2,110		μ g /l	25.0	25	SW846 8260B	10-Aug-06	10-Aug-06	6080689	RW
1330-20-7	m,p-Xylene	3,220		μ ე /l	50.0	25	•	•	•	h	•
Surrogate	recoveries:										
460-00-4	4-Bramofluorobenzene	103		70-130	%		•		•	•	•
2037-26-5	Toluene-d8	89.7		70-130) %		•	•	•	•	•
17060-07-0	1,2-Dichloroethane-d4	91.0		70-130) %		•	•	•	•	•
1868-53-7	Dibromofluoromethane	92.3		70-130) %		•	•	•	•	•

Sample Identification MW 18 SA49007-03

Client Project # 08-204262

Matrix Ground Water Collection Date/Time 31-Jul-06 15:05 Received 02-Aug-06

CAS No.	Analyte(s)	Result	Flag	Units	*RDL	Dilution	Method Ref.	Prepared	Analyzed	Batch	Analysi
Volatile	Organic Compounds						•				
Volatile C	rganic Compounds by 8260B										
Prepare	d by method SW846 503	0 Water MS									
71-43-2	Benzene	728		μ <u>ρ</u> /Ι	5.0	5	SW846 8260B	08-Aug-06	09-Aug-06	6080562	mar
100-41-4	Ethylbenzene	150		μ <u>ο</u> /1	5.0	5	•	•	•		•
1634-04-4	Methyl tert-butyl ether	108		μ <u>α</u> /1	5.0	5	•	•	•	•	•
91-20-3	Naphthalene	87.8		μg/l	5.0	5	•	•	•	•	•
108-88-3	Toluene	125		μ g /1	5.0	5	•	•	•	•	•
95-63-6	1,2,4-Trimethylbenzene	277		μ g /1	5.0	5	•	•	•	•	•
108-67-8	1,3,5-Trimethylbenzene	70.6		μg/l	5.0	5	•	•	*	•	•
1330-20-7	m,p-Xylene	678		μg/l	10.0	5		•	•		•
95-47-6	o-Xylene	90.8		μg/Ι	5.0	5		•	•	•	
Surrogate	recoveries:										
460-00-4	4-Bromofluorobenzene	94.8		70-130) %			•	•	•	•
2037-26-5	Toluene-d8	100		70-13 0) %		•	•	•	•	*
17060-07-0	1,2-Dichloroethane-d4	114		70-130	%		•	•	•	•	•
1868-53-7	Dibromofluoromethane	99.2		70-130	7%		•	*	•	ь	•

Analyte(s)	Result	Flag	Units	*RDL	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch 6080562 - SW846 5030 Water	MS									
llank (6080562-BLK1)										
Prepared & Analyzed: 08-Aug-06										
Benzene	BRL		μ g/ l	1.0						
Chlorobenzene	BRL			1.0						
,1-Dichloroethene	BRL		h ā ų	1.0						
•			μg/l							
ithylbenzene	BRL		μg/l	1.0						
fethyl tert-butyl ether	BRL		μg/l	1.0						
laphthalene	BRL		h@\J	1.0						
oluene	BRL		μ g/ 1	1.0						
richloroethene	BRL		μg/l	1.0						
,2,4-Trimethylbenzene	BRL		hā/J	1.0						
,3,5-Trimethylbenzene	BRL		μg/l	1.0						
ı,p-Xylene	BRL		μg/l	2.0						
-Xylene	BAL		µg/l	1.0						
Surrogate: 4-Bromofluorobenzene	48.7		µg/l		50.0		97.4	70-130		
Surrogate: Toluene-d8	50.1		µg/l		50.0		100	70-130		
Surrogate: 1,2-Dichloroethane-d4	61.0		µg/l		50.0		122	70-130		
urrogate: Dibromofluoromethane	51.0		µg∕l		50.0		102	70-130		
CS (6080562-BS1)										
repared: 08-Aug-06 Analyzed: 09-Aug-06										
enzene	47.4				20.0		87.0	70-130		30
	17.4		μ 0 /I				94.5	70-130 70-130		30
thylbenzene	18.9		µg∕l		20.0					
lethyl tert-butyl ether	18.6		μg/l		20.0		93.0	70-130		30
laphthalene	19.7		μg/l		20.0		98.5	70-130		30
oluene	16.0		µg/l		20.0		80.0	70-130		30
,2,4-Trimethylbenzene	20.6		µg/l		20.0		103	70-130		30
,3,5-Trimethylbenzene	20.2		μg/l		20.0		101	70-130		30
n, p-Xyle ne	37.5		μg/l		40.0		93.8	70-130		30
-Xylene	19.4		μg/ì		20.0		97.0	70-130		30
Surrogate: 4-Bromofluorobenzene	47.5		µg/l	•	50.0		95.0	70-130		
Surrogate: Toluene-d8	50.6		μg/l		50.0		101	70-130		
Surrogate: 1,2-Dichloroethane-d4	60.8		µg∕l		50.0		122	70-130		
Surrogate: Dibromofluoromethane	51.5		µg/l		50.0		103	70-130		
Matrix Spike (6080562-MS1) Source	: SA48997-06									
Prepared: 08-Aug-06 Analyzed: 09-Aug-06										
Benzene	17.5		μg/l		20.0	0.550	84.8	70-130		30
Chlorobenzene	20.6		ha)		20.0	BRL	103	70-130		30
1,1-Dichloroethene	20.6		μg/l		20.0	BRL	103	70-130		30
Totuene	16.3		μg/l		20.0	BRL	81.5	70-130		30
richloroethene	19.1		μg/l		20.0	BRL	95.5	70-130		30
Surrogate: 4-Bromofluorobenzene	49.5		μg/\	•••	50.0		99.0	70-130		
Surrogate: 4-bromoliuorobenzene Surrogate: Toluene-d8	51.6		μg/l		50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4	59.4		μg/l		50.0		119	70-130		
Surrogate: Dibromofluoromethane	50.5		ha\J		50.0		101	70-130		
Matrix Spike Dup (6080562-MSD1) Source Prepared: 08-Aug-06 Analyzed: 09-Aug-06	: SA48997-06									
Benzene	17.4		μg/l		20.0	0.550	84.2	70-130	0.710	30
Chlorobenzene	20.6		μg/ŧ		20.0	BRL	103	70-130	0.00	30
,1-Dichloroethene	19.8		μg/ì		20.0	BRL	99.0	70-130	3.96	30
Toluene	16.1		μg/l		20.0	BRL	80.5	70-130	1.23	30
richloroethene	18.3		μ g /l		20.0	BRL	91.5	70-130	4.28	30
Surrogate: 4-Bromofluorobenzene	49.0		µg/l		50.0		98.0	70-130		
Surrogate: Toluene-d8	51.5		µg/l		50.0		103	70-130		
					50.0		120	70-130		
Surrogate: 1,2-Dichloroethane-d4	60.2		μg/l		20.0		103	70-130		

	·				Spike	Source		%REC	_	RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limit
Batch 6080689 - SW846 5030	0 Water MS									
Blank (6080689-BLK1)										
Prepared & Analyzed: 10-Aug-06										
Benzene	BRL		unti	10						
Chlorobenzene	BRL		μg/l /l	1.0 1.0						
1,1-Dichloroethene	BRL		hā\J	1.0						
•			hā\j							
Ethylbenzene Methyl tert-butyl ether	BRL		hā\j nau	1.0						
•	BRL		hg/l	1.0						
Naphthalene Toluene	BRL		ha\J	1.0						
	BRL		μg/l	1.0						
Frichloroethene	BRL		hg/l	1.0						
1,2,4-Trimethylbenzene	BRL		µg/l	1.0						
1,3,5-Trimethylbenzene	BRL		ha\J	1.0						
m,p-Xylene	BRL		μg/l	2.0						
o-Xylene	BRL		µg/l	1.0	200		100	70 100		
Surrogate: 4-Bromofluorobenzene	30.6 25.8		hB\J		30.0 30.0		102 86.0	70-130 70-130		
Suπogate: Toluene-d8 Suπogate: 1,2-Dichloroethane-d4	25.8 26.5		µg∕1		30.0		88.3	70-130 70-130		
Surrogate: 1,2-Dichioroethane Surrogate: Dibromofluoromethane	20.3 27.1		μ g /l		30.0		90.3	70-130		
-	57.17		La.							
LCS (6080689-BS1)										
Prepared & Analyzed: 10-Aug-06										
Benzene	20.6		μ g /l		20.0		103	70-130		30
Ethylbenzene	21.0		μg/l		20.0		105	70-130		30
Methyl tert-butyl ether	18.4		μg/i		20.0		92.0	70-130		30
Naphthalene	21.6		μg/l		20.0		108	70-130		30
Toluene	18.8		μ g /Ι		20.0		94.0	70-130		30
1,2,4-Trimethylbenzene	21.9		μ g/ l		20.0		110	70-130		30
1,3,5-Trimethylbenzene	21.9		μ g/ l		20.0		110	70-130		30
m,p-Xylene	43.3		µg/l		40.0		108	70-130		30
o-Xylene	21.8		μg/l		20.0		109	70-130		30
Surrogate: 4-Bromofluorobenzene	30.4		µg/l		30.0	<u> </u>	101	70-130		
Surrogate: Toluene-d8	27.6		µg/l		30.0		92.0	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.8		ha\J		30.0		92.7	70-130		
Surrogate: Dibromofluoromethane	29.0		μgЛ		30.0		96.7	70-130		
LCS Dup (6080689-BSD1)										
Prepared & Analyzed: 10-Aug-06										
Benzene	20.8		μ g/ 1		20.0		104	70-130	0.966	30
Ethylbenzene	20.5		μg/l		20.0		102	70-130	2.90	30
Methyl tert-butyl ether	17.4		μg/l		20.0		87.0	70-130	5.59	30
Naphthalene	20.2		μg/l		20.0		101	70-130	6.70	30
Toluene	17.6		μ g /l		20.0		88.0	70-130	6.59	30
1,2,4-Trimethylbenzene	20.9		h8\J		20.0		104	70-130	5.61	30
1,3,5-Trimethylbenzene	21.0		h∂∖ı hâ∖ı		20.0		105	70-130	4.65	30
m,p-Xylene	41.8		hðy h		40.0		104	70-130	3.77	30
o-Xylene	21.4		hayı hayı		20.0		107	70-130	1.85	30
Surrogate: 4-Bromofluorobenzene	30.4		μ g /l		30.0		101	70-130		-
Surrogate: 4-bromonuorobenzene Surrogate: Toluene-d8	26.9		hā\ h		30.0		89.7	70-130		
Surrogate: 1,2-Dichloroethane-d4	26.6		μg/l		30.0		88.7	70-130		
Surrogate: Dibromofluoromethane	28.4		μg/l		30.0		94.7	70-130		
•	Source: SA48987-07									
Matrix Spike (6080689-MS1)	3001CE: 3A40307-07									
Prepared & Analyzed: 10-Aug-06			_		20.5	DD:	00.0	70 400		20
Benzene	19.6		µg/l		20.0	BRL	98.0	70-130		30
Chlorobenzene	19.2		µg/l		20.0	BRL	96.0	70-130		30
1,1-Dichloroethene	15.8		h ū ⁄J		20.0	BRL	79.0	70-130		30
Toluene	16.9		µg/l		20.0	8RL	84.5	70-130		30
Trichloroethene	17.8		ha\j		20.0	BRL	89.0	70-130		30
Surrogate: 4-Bromofluorobenzene	31.8		µg/l		30.0		106	70-130		
Surrogate: Toluene-d8	27.3		µg/l		30.0		91.0	70-130		
···········	· · · · · · · · · · · · · · · · · · ·									

This laboratory report is not valid without an authorized signature on the cover page.

				·	Spike	Source		%REC		RPD
Analyte(s)	Result	Flag	Units	*RDL	Level	Result	%REC	Limits	RPD	Limi
Batch 6080689 - SW846 503	0 Water MS									
Matrix Spike (6080689-MS1)	Source: SA48987-07									
Prepared & Analyzed: 10-Aug-06										
Surrogate: 1,2-Dichloroethane-d4	27.4		μg/l		30.0		91.3	70-130		
Surrogate: Dibromofluoromethane	27.9		µg/l		30.0		93.0	70-130		
Matrix Spike Dup (6080689-MSD1)	Source: SA48987-07									
Prepared & Analyzed: 10-Aug-06										
Benzene	20.1		μg/l		20.0	BRL	100	70-130	2.02	30
Chlorobenzene	20.3		µg/l		20.0	BRL	102	70-130	6.06	30
1,1-Dichloroethene	16.5		μg/l		20.0	BRL	82.5	70-130	4.33	30
Toluene	17.8		μg/l		20.0	BRL	89.0	70-130	5.19	30
Trichloroethene	18.1		μg/l		20.0	BRL	90.5	70-130	1.67	30
Surrogate: 4-Bromofluorobenzene	30.3		µg/l		30.0		101	70-130		
Surrogate: Toluene-d8	27.2		μg/l		30.0		90.7	70-130		
Surrogate: 1,2-Dichloroethane-d4	27.4		μg/l		30.0		91.3	70-130		
Surrogate: Dibromofluoromethane	27.9		μg/l		30.0		93.0	70-130		

Notes and Definitions

RE Reanalysis for data confirmation.

E The concentration indicated for this analyte is an estimated value above the calibration range of the instrument This value is considered an estimate (CLP E-flag).

BRL Below Reporting Limit - Analyte NOT DETECTED at or above the reporting limit

dry Sample results reported on a dry weight basis

NR Not Reported

RPD Relative Percent Difference

A plus sign (+) in the Method Reference column indicates the method is not accredited by NELAC

<u>Laboratory Control Sample (LCS)</u>: A known matrix spiked with compound(s) representative of the target analytes, which is used to document laboratory performance.

Matrix Duplicate: An intra-laboratory split sample which is used to document the precision of a method in a given sample matrix

Matrix Spike: An aliquot of a sample spiked with a known concentration of target analytés). The spiking occurs prior to sample preparation and analysis. A matrix spike is used to document the bias of a method in a given sample matrix

Method Blank: An analyte-free matrix to which all reagents are added in the same volumes or proportions as used in sample processing. The method blank should be carried through the complete sample preparation and analytical procedure. The method blank is used to document contamination resulting from the analytical process.

Method Detection Limit (MDL): The minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix type containing the analyte.

Reportable Detection Limit (RDL): The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions For many analytes the RDL analyte concentration is selected as the lowest non-zero standard in the calibration curve. While the RDL is approximately 5 to 10 times the MDL, the RDL for each sample takes into account the sample volume/weight, extract/digestate volume, cleanup procedures and, if applicable, dry weight correction Sample RDLs are highly matrix-dependent.

<u>Surrogate</u>: An organic compound which is similar to the target analyte(s) in chemical composition and behavior in the analytical process, but which is not normally found in environmental samples These compounds are spiked into all blanks, standards, and samples prior to analysis. Percent recoveries are calculated for each surrogate.

Validated by: Hanibal C. Tayeh, Ph.D. Nicole Brown

	න්	7			· T		T	<u>ہ</u>			X = 0	<u> </u>	· —	Pr	1	1	ړچ]
EDD Format	E-mail to	T Eau Parulto		;		103	1 22	44007-21	Lab Id:		∥ ≝ ;	/=CH ₃ OH &:	ω	Project Mgr.:	R.		Report To:	SPECT			
	E-mail to Woodard 0	when available to (X1 MV	44	Trip Blank	Sample Id:	G=Grab C=0	×~	8= NaHSO ₄ 9=	=H ₂ SO ₄	Laura wooderd	5	5	50 E	SPECTRUM ANALYTICAL, INC. Featuring HANIBAL TECHNOLOGY			
	ecsconsult.com	_				5		7/31/06	Date:	Composite	ST		4=HNO ₃ 5=NaOH		ררויצס	105,40	_				
	.Gm					15:00	97.51	54.8	Time:		dge A=Air	10=	6=	P.O. No.:	 		Invoice To		CHAIN OF CUST		
Fe	all-	Rel				 <	-	6 6W 3	Type Matri Prese	X	ve		c Acid	0.:			Tool kull	Page_	OF C		
JB.	Sid	Relinquished by:				<		W	# of \ # of A # of C	Ambe	r Glass		Containers:	RQN: _			077/6/100	- of -	JSTOI		
\ }						6		<	# of F		VTsca	<u></u>	rs:					χı	DY RE		
1 2 Can	Fedle	Received by:									·····		Analyses:	Sampler(s): J.G.	Location: St. Johnson	Site Name: Jordien	Project No.: 08-		RECORD		
		y:								_			••	•	J€ _	their Perholeum	rathot-	Min. 24-hou Samples dis otherwise ir	Rush TATs	S Standard	
2/2/2	7/31/02	Date:				-			State specific reporting standards:	Other	☐ Provide CT DPH RCP Report QA/QC Reporting Level	(cneck if needed) Provide MA DEP MCP CAM Report	OA Reporting Notes:			CVAN	Ϋ́	Min. 24-hour notification needed for rushes. Samples disposed of after 60 days unless otherwise instructed.	Rush TAT - Date Needed: All TATs subject to laboratory approval.	Special Handling: (2) Standard TAT - 7 to 10 business days	SAY 9057
Seo/	18:45	Time:						ena	pecific reporting standards:	No QC	RCP Report	MCP CAM Report	ing Notes:		State: M			ded for rushes. Jays unless	atory approval.	ng:	3

APPENDIX B

FIELD NOTES

7/17/06 No. Han Petrojeun 5-1 I maly 08-204262 00 10:30 Optide JE/KR 10:45 Callibrate Horba 243 Ruh 8.45 W.21 Calibrate Pine Horita PH Cond Turb DO 413 - Could not find MW-1, MW-11, MW-12, MW-17, MW-18 - Found FP in MW-22 and MW-28 - 500 ML taken from MW-22

- 200mL takes from MW-28

	-		-							37
A ! 1	 	<u> </u>	No	احا	ين	PN	1/55.	2y_	1 :	
14 h	1	0				<u></u>		_[
B	efare	Buil	ry Me	45W	بسرر	1+5	-	<u> </u>		
''		_		' '			- 1		7.0-	<u>. </u>
DI	P= \$16	2.92		νı	V -,	7.	5 b	_	4216	
							_		= 0	,64
رکو	churge	test	-	3.	اريون	-6	1	7,32	-	
)						İ			·
Time	DTP	DTI	ع. ا ب	P 7	4,2	Kres	5	:		
0	609	7.09		0.1						
2	6.98	7.09		0	i .			1	1	;
4	6.43	7,10		9.1	I			:	1	;
6	6,97	7,11					-	-		• :
8	6.97	7.12		<u>0,1</u> 0.1	5			-		;
lo	6.91	7.13		0,1	·				-	:
12	6,97	7.13		6.1				. ;	!	-
14	6.91	7.13		٥.	1. 1,					
16	6.47	7 1 3	1 P	φ. I	Ú			i	ì	!
16	6.97	713	7 1 1 1 1 1	0.1	T					•
20		7.1		9.)	,			-	-	:
30	6.46			6. <i>l</i>			1	:	Ì	· · · ·
	31.10	4	~ ·		V		1		į	1
	3/01	4	ـ ، <u>ـ</u> آ • و	 	•	260	n Ì	FP		
	3. led	They	men h	(7)		10	ر است. اسل	' 12. 0 L	1	1 i
	0~(10.0	12 T	N.C.	-1	NO W		304	101	-	1
1/6	1/51	2 (5)	f5; h	,	1<	1:3	20		-	•
V.	•				1	υ · 、	/·			

38 7/16/06, Northern Petrokun, St. 5, VI 08-2042620
10:00Am Coste UR/JG
- Complete well monitoring
10:15 Calibrate Horibu (ECS)
74 Cord Turb Do 3,49 4,28 17,4 -7,72 -
Callbrake Pine Hariba PH Gord Turb Po 3.86 23 155 7.60 4.47 209
The Had some for product of the way of product of the holds

ECS Well Sampling Form – Page 1 of 2

Site Name/Location: 1 Petroleum Bath St. Jethbury Date: 7/17/06
Sample I.D.: MW 5 Collection Time 11:45
Sampling Sequence: Of 18
EC S Field Staff Collecting This Sample: J. C.
Climatic Conditions (Temp/Precip): 90° F
Depth To Product: Feet Depth To Water: Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground): feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method: TP
Total Depth Of Boring (Take Measurement After Sampling):
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe) Tub.: 19
Submitted For Analysis By (Method or Methods): 80215 Viscab
Field Test Results (HACH Kits):
Alkalinity: N/A Chloride: N/A Iron (II): N/A Sulfate: N/A
Iron (II):
Notes: odds, Sheen on purse
·
·
·

() i

Low-Flow Well Sampling Form - Page 2 of 2 Location: N- Petgoleum 10.84 Depth To Of Screen (Below RP) Well Id: <u>M ~ 5</u> Bottom Top Field Personnel: 36 Pump Intake Depth: Pumping Device: Geograpo Peristallic Pana Reference Point (RP - TOC or other-describe): Cumulative Depth To Purge Rate Temperature Specific ORP / Turbidity Time Pump ηЦ DO Comments Speed RPM Volume Purged 5 °C (24 Hr) Water mL/min) Conductance eН (Mg/L) (NTU) (ft) (uS/cm) (mV) 3.28 1.49 16 44 -57 3,65 -5 11.72 60 0.10 420 6 7000 15.2 1.50 4.20 S.J. 11:30 15.34 2.00 -67 1.49 11:72 15.42 11:30 4.20 15.42 5,85 755 -101 11:35 4,20 1.418 5,90 4.20 -110 1,5 708 5.96 20 15.55 1.56 715 4.20 6.48 - W1 Sample John Notes:

<u>000</u>	Shoen	ON Dag	<u></u>	 		 			·
	· · · · · · · · · · · · · · · · · · ·	· · · ·		 	· <u></u>			_	
						-			
		1 =				 			
	 -		•				<u>-</u>		

ECS Well Sampling Form - Page 1 of 2

Site Name/Location: N. Petrokum Date: 7/17/06
Sample I.D.: M4-13 Collection Time 42.05
Sampling Sequence: $Q = Q = Q = Q = Q = Q = Q = Q = Q = Q $
EC S Field Staff Collecting This Sample:
Climatic Conditions (Temp/Precip):
Depth To Product: ND Feet Depth To Water: () Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling):
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque Opaque
Sample Collected from (tubing, bailer, or other-describe)
Submitted For Analysis By (Method or Methods): $VT \otimes 2IB$
Field Test Results (HACH Kits):
Alkalinity: Chloride:
Iron (II):
Notes: About
<u> </u>
· · · · · · · · · · · · · · · · · · ·

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum O/A 1 10.74 Depth To Of Screen (Below RP) Top Bottom Field Personnel: Pump Intake Depth: TOC Reference Point (RP - TOC or other-describe): Pumping Device: Depth To Purge Rate Time Pump Cumulative Temperature Specific pΗ ORP / DO Turbidity Comments Water °C. (24 Hr) Speed Volume mL/min) Conductance (Mg/L) (NTU) eН (ft) Purged (uS/cm) (mV) 1.5/ 11:45 120 10.16 120 3.8 219.0 0.66 11:50 7.30 133 -124 10.17 191,0 M:55 ìί 57.0 13.3 7.43 -130 11 12:60 7.51 4.02 3.3 -13312:65 7.55 3,42 1 2.5gas 141 -136 11 Smole Notes: odor

ECS Well Sampling Form – Page 1 of 2

Site Name/Location: N. Petroleum St. Johnsburg Date: 7/17/01
Sample I.D.: MWW Collection Time 12:45
Sampling Sequence: 3 of 18
EC S Field Staff Collecting This Sample:
Climatic Conditions (Temp/Precip): 90° F
Depth To Product: Feet Depth To Water: 4.55 Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 10.95'
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)
Submitted For Analysis By (Method or Methods): SO2L5 VT Sccn
Field Test Results (HACH Kits):
Alkalinity:
Iron (II):
Notes: Offic and Sheen on purge
· ;

Low-Flow Well Sampling Form – Page 2 of 2													
Location	: W. P	drolein				Depth To	 o	NA		1 10.95	Of Screen (Below RP)		
Well Id:	MWIE	}						Тор	·	Bottom			
Field Per	sonnel:	TG				Pump Intake Depth:							
Referenc	e Point (RP	- TOC or other	r-describe):	706		Pumping	Device:_	Dorish	altic Por	η ()			

Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed RPM	Cumulative Volume Purged چو ل پ	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH (mV)	DO (Mg/L)	Turbidity (NTU)	Comments		
1292		70	70	0.10	15.62	2.50	6.19	-127	5.60	-5			
17:30	4.55		__		15.19	2.11	625	-130	278	505			
72:35	4.55				14.96	2.00	6.29	-129	2.13	735			
17:40	4.55			V	15.10	1.97	6.31	-129	2.00	162			
12:45	4,55	V		00.E	14.92	1.96	6.34	-129	1.79	102	sampled '		
					<u>.</u>					^	DUP taking		
							\sim				-		
					_								
								<u></u>					
Notes:	Notes: Odor and sheen on purge												
	, .					<u>.</u>							

ECS Well Sampling Form – Page 1 of 2

Site Name/Location: N. Petrokum	Date: 6/17/06	
Sample I.D.: MW- 22 Collect	on Time	
Sampling Sequence: 4 Of 18		
EC S Field Staff Collecting This Sample:		
Climatic Conditions (Temp/Precip):	30° P. C.	
Depth To Product: 443 Feet Depth To W	ater: <u>5.79</u> Feet	
Reference Point (TOC or other -Describe)		
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	boveground, "-" For Belowground):feet	
Measurement Technique (WLM, IP or other -Describe)	IP	
Presence/Absence Of NAPL And Detection Method:	Defection IP	
Total Depth Of Boring (Take Measurement After Sampling)	NIA	
Well Yield: High Low Pu	imped Dry?	
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque	NI
Sample Collected from (tubing, bailer, or other-describe)	Tubing	
Submitted For Analysis By (Method or Methods):	VT 8621B	
Field Test Results (HACH Kits):		
Alkalinity: N/A	Chloride: /V///	
Iron (II): ///	Sulfate: /V/A	
Notes: Ball Down lest pretorn	(λ	•

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum Depth To Of Screen (Below RP) Well Id: MW-22 Top Bottom Field Personnel: Pump Intake Depth: TOC Reference Point (RP – TOC or other-describe): Geogunp Pumping Device: Time Depth To Purge Rate Pump Cumulative Temperature Specific pН ORP / DO Turbidity Comments (24 Hr) Water mL/min) °C. Speed Volume Conductance eН (Mg/L) (NTU) (ft) Purged (uS/cm) (mV) Notes:

ECS Well Sampling Form - Page 1 of 2

Site Name/Location: NP-10/ecm St. Johns	Date: 7/17/06
Sample I.D.: MW Collection	
Sampling Sequence: 5 Of 18	
EC S Field Staff Collecting This Sample: _ \(\frac{\frac{1}{3}}{6}\).	
Climatic Conditions (Temp/Precip):	·
Depth To Product:	ater: <u>4.80</u> Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For Al	
Measurement Technique (WLM, IP or other -Describe)	<u></u>
Presence/Absence Of NAPL And Detection Method:	10 74
Total Depth Of Boring (Take Measurement After Sampling):	11.30
Well Yield: High Low Pur	mped Dry?
Final Water Appearance (At Sample Collection) Clear	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods): 802	16 VT Sony
Field Test Results (HACH Kits):	,
Alkalinity: N/A	Chloride: N/A_
Iron (II):	Sulfate: V/A
Notes: light oder	

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum 11.30 Depth To Of Screen (Below RP) Well Id: Mu/ Top Bottom Field Personnel: 36 Pump Intake Depth: Pumping Device: Person the geopers Reference Point (RP – TOC or other-describe): Time Depth To Purge Rate Pump Cumulative Temperature Specific ORP / Turbidity рΗ DO Comments Water mL/min) Speed Volume Purged School . ℃ (24 Hr)Conductance eН (Mg/L) (NTU) (ft) (uS/cm) (mV) 80 80 -178 14:23 0.10 15.08 6.08 4.80 1430 6,29 14.43 -127 473 480 3,68 635 784 -125 4,80 6.35 14:40 14.11 13.92 120 122 14,50 6.35 2.5.5 13.95 14,55 4.80 13.98 2.55 Daw Olach Notes: light odor

ECS Well Sampling Form - Page 1 of 2

Site Name/Location: N. Petro leum	Date: 4/17/06
Sample I.D.: Mw - 19 Collect	ion Time 15.50
Sampling Sequence: 6 of 18	
EC S Field Staff Collecting This Sample:	
	80° P. C.
Depth To Product:	rater: 1 168 Feet
Reference Point (TOC or other -Describe)	<i>C</i>
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	LP /
Presence/Absence Of NAPL And Detection Method:	j.
Total Depth Of Boring (Take Measurement After Sampling	y,26
Well Yield: High Low P	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	lubing
Submitted For Analysis By (Method or Methods):	T 8021B
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N/H
Iron (II):	Sulfate:
Notes: Godor and Sheen	
	;

-- USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 N. Petroleum 11.26 Location: NI Depth To Of Screen (Below RP) Well Id: NW-19 Top Bottom 8.28 Field Personnel: Pump Intake Depth: TOC Reference Point (RP – TOC or other-describe): Geopunp Pumping Device: Time Depth To Purge Rate Pump Cumulative Temperature Specific pН ORP / DO Turbidity Comments (24 Hr)Water mL/min) Speed •c Volume Conductance (NTU) eН (Mg/L) (ft) Purged (uS/cm) (mV) 4.85 120 4920 15:26 120 17.5 3,06 1.29-136 7.061 248,0 15,25 M 120 120 2.34 15:30 2,22 C. 163 -150 197 143,0 12 Λ 15'35 2,23 1) 16.5 200,0 1.70 15:40 1. 17,0 1.48 255,0 2,13 15:45 16.6 ٧, 267.0 Notes: Oder and Sheep

ECS Well Sampling Form - Page 1 of 2

Site Name/Location: N- Petroloum St. Johnsbury Date: 7/17/06
Sample I.D.: MW-Decs Collection Time 16.05
Sampling Sequence: Of 16
EC S Field Staff Collecting This Sample: 36
Climatic Conditions (Temp/Precip):
Depth To Product: Feet Depth To Water: Feet Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):O, _O feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 10:81
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque Opaque
Sample Collected from (tubing, bailer, or other-describe).
Submitted For Analysis By (Method or Methods): 80216 VIscan
Field Test Results (HACH Kits):
Alkalinity: N/A Chloride: N/A
Iron (II):
Notes: light odor

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: 1 Perfoloum NA 1 10.87 Depth To Of Screen (Below RP) Well Id: MW-LECS Bottom Top Field Personnel: Pump Intake Depth: Pumping Device: Perhalstic Grann Reference Point (RP – TOC or other-describe): Time Depth To Purge Rate Pump Cumulative Temperature Specific pН ORP / DO Turbidity Comments (24 Hr) Water mL/min) Volume Speed °C Conductance (Mg/L) (NTU) eН Purged School RPM (ft) (uS/cm) (mV) 1530 5.48 4.70 60 0.10 17.27 -119 6.11 60 1535 5.50 16.25 -126 -5 15:40 5,50 2.49 16.02 6,29 -178 15:45 5:51 2.44 631 5.03 784 16,00 -127 6.32 15:50 5.51 16.10 2.39 -127 277 15:35 5.51 2.36 633 SIR 15.76 -125 2,32 16:00 5.51 15.81 6.32 442 -124 16:05 5.51 15.66 229 6.30 203 Samples 24-2 -121 Notes: light odor

Site Name/Location: N. Petro leun	Date: 1/17/06
	on Time
Sampling Sequence:OfOf	
EC S Field Staff Collecting This Sample:	
Climatic Conditions (Temp/Precip):	P.C.
Depth To Product: Feet	ater: <u>7,39</u> Feet
Reference Point (TOC or other -Describe)	TOC
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	boveground, "-" For Belowground): $\frac{\cancel{2} \cdot \cancel{3}}{\cancel{5} \cdot \cancel{5}}$ feet
Measurement Technique (WLM, IP or other -Describe)	TP .
Presence/Absence Of NAPL And Detection Method:	/ /I'
Total Depth Of Boring (Take Measurement After Sampling)	11.84
Well Yield: High Low Pu	mped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N/A
Iron (II):	Sulfate: N/A
Notes: 0 dw	
·	
•	

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS-

Location: N. Petroleum Depth To NA / 1156 Of Screen (Below RP)

Well Id: NN - 27 Top Bottom

Field Personnel: NR

Reference Point (RP - TOC or other-describe): TOC Pumping Device: Geograp

Time (24 Hr) Water (ft) Water (ft) Water (ft) Speed Volume Purged (uS/cm) (mV)

NA / 1156 / 156 / 156 Of Screen (Below RP)

Top Bottom

Pump Intake Depth: 9/5

Pumping Device: Geograp

Comments

Conductance (uS/cm) (mV)

NTU)

Purged (uS/cm) 7/48 30 4 04 7710

Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH	DO (Mg/L)	Turbidity (NTU)	Comments
19/6:45	12	60	60	f diged	178	(us/cm) - 41 4	7.48	(mV) 30	401	771.0	7
16'50	7.93)			17,3	0,381	7.24	43	2,82	461	
16:55	- \\				17,2	0.379	7,26	45	2.57	405,0	
17:00	7.94				16.9	0.375	7,31	54	1,96	698.0	\ / /
17:05	7.46				16-5	0.374	7.36	60	1.81	-5.0	
17:10	7,95				16.3	0.372	7.38	69	1.56	t [*]	
17:15	7.96			V	16,6	0.364	7.40	78_	1,38	£,	
17:20	7.96	>	V	Zgal	16.3	,368	7.40	73	1.28	10	
					<u> </u>						
·											
Natasi					<u> </u>						_6

Notes: Off

Site Name/Location: N. Petroleum	
Sample I.D.: Min 26 Collect	ion Time
Sampling Sequence: 9 Of 18	
EC S Field Staff Collecting This Sample: J.G	
Climatic Conditions (Temp/Precip): 97°	F
Depth To Product: Feet Depth To W	/ater: 7.62 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): + 3.00 feet
Measurement Technique (WLM, IP or other -Describe)	<u>Ib</u>
Presence/Absence Of NAPL And Detection Method:	rd IP
Total Depth Of Boring (Take Measurement After Sampling)	13.28
Well Yield: High Low Po	imped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods): 802	15 VIsan
Field Test Results (HACH Kits):	16/1
Alkalinity: N/A	Chloride:
Iron (II):	Sulfate: N/A
Notes: Notes:	
	,
<u> </u>	
·	· ·
	<u> </u>
<u> </u>	<u> </u>
	k.

-- LISE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum 13.28 Depth To Of Screen (Below RP) Well Id: Mw. 26 Top Bottom Field Personnel: 36 Pump Intake Depth: TOC Grapamo Reference Point (RP – TOC or other-describe): Pumping Device: Perstaldic Depth To Time Purge Rate Pump Cumulative Temperature Specific Turbidity пΗ ORP / DO Comments (24 Hr) Water mL/min) °C Conductance Speed Volume eН (Mg/L) (NTU) (ft)Purged (uS/cm) (mV) 7,03 19.48 60 65) 19.45 P3<u>8</u> 16:50 -33 16.55 19.34 0.26 Turbidity Golng 6.46 17:00 1.60 19.08 -40 0.26 19.09 17,05 1.45 846 7.66 0.27 Junped Sach down to -5 957 18.58 650 17:10 Then back to -S 18.91 Then both to - 85 mpkg 1.35 1.75 0-27 846 17,15 6.51 -40 7.66 Notes: Nona

Site Name/Location: N- Prholeum	Date: 7/17/06
Sample I.D.: MW 10) Collect	
Sampling Sequence: 10 of 18	
EC S Field Staff Collecting This Sample:	
Climatic Conditions (Temp/Precip):	5°P
Depth To Product:	fater: 4.26 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): -O. B feet
Measurement Technique (WLM, IP or other -Describe)	127
Presence/Absence Of NAPL And Detection Method:	ND IS
Total Depth Of Boring (Take Measurement After Sampling)	D.26
Well Yield: High Low Po	imped Dry?
Final Water Appearance (At Sample Collection) Clear_	1
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods):	215 VT. Scan
Field Test Results (HACH Kits):	
Alkalinity: // / /	Chloride: M/A Sulfate: M/A
Iron (II):	Sulfate: N/A
Notes: Notes:	
<u> </u>	
	· · · · · · · · · · · · · · · · · · ·

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Potreleum 12.26 Depth To Of Screen (Below RP) MW 102 Well Id: Top Bottom Field Personnel: J.G. 800 Pump Intake Depth: TOC Reference Point (RP – TOC or other-describe): Pumping Device: Perlataltic GOODONO Time Depth To Purge Rate Pump Cumulative Temperature Specific pН ORP / Turbidity DO Comments (24 Hr) Water mL/min) Speed Volume Purged 9-16-10 °C Conductance (Mg/L) (NTU) eН MAS (ft) (uS/cm) (mV) 17:50 420 68 80 0,10 ~103 512 6.71 3,20 16.04 0.76 239 15.32 17:55 4.20 0.81 181 -121 1,48 6.68 -128 4.20 0.85 18:00 173 0,88 4.21 6.58 8:05 -127 72 4.21 140 18.10 14.64 6.62 0.89 -13 0.90 18:15 4,21 148 -134 4,23 2.00 0.90 1,22 18:30 6.67 Samples tehan -136 Notes: Non.

Site Name/Location: N. Petroleum	Date: 7/18/06
Sample I.D.: NW 32 Collect	on Time 11:15
Sampling Sequence: Of S	
EC S Field Staff Collecting This Sample:	R
Climatic Conditions (Temp/Precip):	P. C.
Depth To Product: Feet Depth To W	ater: 4.66 Feet
Reference Point (TOC or other -Describe)	Toc
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	boveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	LP .
Presence/Absence Of NAPL And Detection Method:	/I/
Total Depth Of Boring (Take Measurement After Sampling)	10.60
Well Yield: High V Low Pt	imped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	lubing
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: M/H
Iron (II): ///†	Sulfate: /V//7
Notes: 1001	
	!

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petosleum 10.60 Depth To Of Screen (Below RP) Well Id: MW -32 1.5 Bottom Top VLR Field Personnel: Pump Intake Depth: 10c Reference Point (RP – TOC or other-describe): Pumping Device:_ Geopins Time Depth To Purge Rate Pump Cumulative Temperature Specific ORP / DO рН Turbidity Comments (24 Hr) Water mL/min) Volume Purged Sales •c Speed Conductance еH (Mg/L) (NTU) (ft) RPM (uS/cm) (mV) 4.66 10:30 21,24 60 60 0.96 6.18 108 920 O.io 6,32 4.66 6.28 10:35 20.71 0.99 106 845 4.66 50,53 18:40 6.43 455 1.01 5.14 10:45 0,99 20.40 87 320 6.47 4.74 4.98 20.61 10:50 0.99 651 78 225 10:55 4.66 655 20.70 0.97 197 70 11:00 6.53 69 0.99 4.67 30.18 191 11:05 0.98 20.13 6.59 4.45 62 187 184 90.08 iclo 6.62 436 0,99 11:15 4.67 175 19.91 6.64 55 425 0.98 Sam Dic Johan Notes: None

Site Name/Location: N Petroleum	Date: 7/18/06
Sample I.D.: M1/-3	ion Time // // O
Sampling Sequence: 12 Of 18	
EC S Field Staff Collecting This Sample:	KR
Climatic Conditions (Temp/Precip):	86°, P. C.
Depth To Product: Feet Depth To W	vater: 442 Feet
	TOC
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	 Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	IP
	D/IP
Total Depth Of Boring (Take Measurement After Sampling	10.71
Well Yield: High Low P	
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	Tu bing
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity: N/A	Chloride: N/A
Iron (II):	Sulfate: N/A
Notes: Notes:	
	,
	1

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 10,71 Location: N. Petsieum Depth To Of Screen (Below RP) Top **Bottom** Field Personnel: Pump Intake Depth: Geopump 100 Reference Point (RP - TOC or other-describe): Pumping Device: Time Depth To Purge Rate Cumulative Pump Temperature Specific рН ORP / DO Turbidity Comments (24 Hr) Water °C mL/min) Volume Speed Conductance eН (NTU) (Mg/L) (ft) Purged (uS/cm) (mV) bo 18.4 60 7,25 71.5 10:32 , 75/9 7.32 90 90 60.1 10:37 5.37 ,837 7,57 2.61 10'42 #1 7.69 ,94 1 E 47.7 36.6 7.75 10:47 702 1.62 .876 6.39 10:52 17,2 107 ,833 7.75 1.52 26,2 7114 2921 7.80 1,35 ii. 0:57 ,824 17,0 Notes: 1/200

Site Name/Location: N. Detloleum	Date: 1/14/66
Sample I.D.: MW-30 Collect	ion Time 11.50
Sampling Sequence: 13 Of 18	
EC S Field Staff Collecting This Sample:	
Climatic Conditions (Temp/Precip):	90°, P.C.
Depth To Product: Feet Depth To W	l
Reference Point (TOC or other -Describe)	100
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): feet
Measurement Technique (WLM, IP or other -Describe)	IP
Presence/Absence Of NAPL And Detection Method:	YD /IP
Total Depth Of Boring (Take Measurement After Sampling	10,60
Well Yield: High V Low P	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N//Ł
Iron (II): // //-	Sulfate: N/A
Notes: Notes:	
·	<u> </u>

-USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS-

Location: N. Petroleum

Depth To

Pump Intake Depth:

Time Depth To

Water Malmin)

Depth To

Pump Cumulative Temperature Specific (24 Hr)

Water Malmin)

Depth To MAM | 10.60 Of Screen (Below RP)

Top Bottom

Pump Intake Depth:

Time Obepth To Purge Rate Malmin Speed Volume

Pump Cumulative Temperature Specific PH ORP | DO Turbidity (Mg/L) (NTU)

Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH (mV)	DO (Mg/L)	Turbidity (NTU)	Comments
11:15	5.18	60	60	æ	189	.536	7,93	2 4	9,03	125,0	
11:20	5.16	60	60		17,9	,512	7.77	-21	4,03	38,2	
51:25	η	٠,	<i>t.</i> -		17.6	.64]	7,76	-37	2,85	25,1	
11:30	17	e t	``\		<i>1</i> 7,7	1671	780	-45	2,45	26,1	
11:35	и	/1 	η,		17,4	.691	7.79	-62	2.02	23.1	
11:40	5,17			· V	17.3	,706	7,79	-60	1.69	17.5	
4:45	5.17	· ·	\bigvee	291	17.3	1720	7.74	-62	1.55	10,1	Smple
}	-										
Natasi						ļ <u></u>					

Notes:	None			 	_	 						
		 		 		_		 				
			<u>-</u> .	 		 	<u> </u>	 	 _	_		_
		·		 -			_	 	 	_		_

Site Name/Location: N. Petroleun	Date: 7/18/06
Sample I.D.: MW & Collect	ion Time 2.10
Sampling Sequence: 14 Of 18	·
EC S Field Staff Collecting This Sample: <u>J6</u>	
Climatic Conditions (Temp/Precip): \(\sum_{50}^{\circ}\)	
Depth To Product: Peet Depth To W	ater: <u>5.86</u> Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): \(\frac{1}{3}\)\(\frac{0}{0}\)\(\frac{1}{2}\)\
Measurement Technique (WLM, IP or other -Describe)	160
Presence/Absence Of NAPL And Detection Method:	l
Total Depth Of Boring (Take Measurement After Sampling)	1: 14.66
<u> </u>	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	
Sample Collected from (tubing, bailer, or other-describe)	
Submitted For Analysis By (Method or Methods):	VT 80213
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N/A
Iron (II):	Sulfate: /V//t
Notes: None	
	!

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum 14-66 Of Screen (Below RP) Depth To Well Id: MW 8 Top Bottom Field Personnel: <u>J</u>6 Pump Intake Depth: TOC Reference Point (RP – TOC or other-describe): Pumping Device: Ceppum P Depth To Time Purge Rate Pump Cumulative Specific Temperature ORP / рН DO Turbidity Comments Water Speed KIM Volume Purged 9000 (24 Hr) mL/min) °C Conductance eН (Mg/L) (NTU) (ft) (uS/cm) (mV) 10 11:35 60 6.48 -98 0.10 20.36 5-86 -81 11:40 133 1-30 1710 11:50 5.86 6.51 1.29 17.02 109 11:55 5.86 17.15 1.87 1.29 6.57 -117 146 12:00 5.86 16.68 6.50 -118 157 1.29 12:05 5.86 1.29 6.52 1.69 120 5.86 12:10 6.52 Sample taken 1.29 108 16.50 1.75 -120 Notes: None

Site Name/Location: N. Petroleum	Date: 7/18/06
Sample I.D.: MW 29 Collecti	on Time 12; 1/2
Sampling Sequence: 15 Of 18	
EC S Field Staff Collecting This Sample:	KK
Climatic Conditions (Temp/Precip):	80°, P. C.
Depth To Product: /// Feet Depth To W	ater: 4.70 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	
Presence/Absence Of NAPL And Detection Method:	
Total Depth Of Boring (Take Measurement After Sampling)	11.00
Well Yield: High Low Po	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	
Sample Collected from (tubing, bailer, or other-describe)	luting
Submitted For Analysis By (Method or Methods):	VT 802113
Field Test Results (HACH Kits):	11/4
Alkalinity: N/A	Chloride: N/A Sulfate: N/A
Iron (II):	Sulfate: ///
Notes: None	
·	,

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 N. Petrojeum Location: NA 11.00 Depth To Of Screen (Below RP) Тор Bottom Field Personnel: Pump Intake Depth: Beopump Reference Point (RP – TOC or other-describe): Pumping Device: Time Depth To Purge Rate Temperature Pump Cumulative Specific ORP/ DO pΗ Turbidity Comments (24 Hr) Water mL/min) Speed . ℃ Volume Conductance eН (Mg/L) (NTU) (ft) Purged (uS/cm) (mV) 120 12:00 120 ,500 7.91 24.2 8.92 20.4 12:05 ,521 7.66 129 194 4.0 7,4 12:10 ,584 Û 1.8 7,63 655 12:20 n 23 h 638 12:25 Y 8.0 .98 67 4.78 -31 12:30 .610 H 12:35 ,694 -34 Sungh И ,74 Notes:

1/ one

Site Name/Location: N. Petroleum	Date: 7/18/06
Sample I.D.: MW-O Collect	ion Time
Sampling Sequence: 16 of 18	
EC S Field Staff Collecting This Sample:	
Climatic Conditions (Temp/Precip):	
Depth To Product:	/ater: 4.8] Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	17
Presence/Absence Of NAPL And Detection Method:	VD / IP
Total Depth Of Boring (Take Measurement After Sampling	10.8%
Well Yield: High \(\sum_{\text{Planck}} \) Low \(\text{Planck} \)	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	\ \ \ a \ \ -
Submitted For Analysis By (Method or Methods):	VT 80213
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N/A Sulfate: N/A
Iron (II):	Sulfate: N/A
Notes: Nore	
	-
	, :

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 110.88 M. Petrieum Location: NA Depth To Of Screen (Below RP) Top Bottom Field Personnel: 36 Pump Intake Depth: TOC Reference Point (RP - TOC or other-describe): Geogunp Pumping Device: Time Depth To Purge Rate Pump Cumulative Temperature Specific рН ORP / DO Turbidity Comments (24 Hr) Water Speed >>M Volume Purged Lby mL/min) °C Conductance eН (Mg/L) (NTU) (ft) (uS/cm) (mV) 4.83 17:32 17.82 5.71 60 60 0.10 6.53 298 1:01 4.82 12:40 17.18 6.48 3.00 1.04 273 1245 4.8) 16.61 1.13 -29 2.34 266 4.81 050 16.55 1.19 276 13:33 4.82 406 16.25 -53 1.20 13:00 4.87 -56 16.38 1.23 6.47 300 15.99 4.82 13.05 6.48 -56 80 13:10 Sample taken 4.81 16.09 1.23 6.49 ~58 Notes:

· None		
		<u> </u>
		

Site Name/Location: N. Petr, leum	Date: 7/18/06
Sample I.D.: MW-2 Collect	tion Time 13.22
Sampling Sequence: 17 Of 16	
EC S Field Staff Collecting This Sample:	KR
Climatic Conditions (Temp/Precip):	P.C.
Depth To Product: Feet Depth To V	Water: 4,80 Feet
Reference Point (TOC or other -Describe)	Toc
Ref. Point Elev. Relative To Ground Surface (Use "+" For	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	<u> </u>
Presence/Absence Of NAPL And Detection Method:	NO /IP
Total Depth Of Boring (Take Measurement After Sampling	3: 11.64
Well Yield: High Low P	rumped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)_	
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity: N/A	Chloride: // A
Iron (II):	Sulfate: N/A
Notes: Oils	
·	

-- USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Ğ	
,	

Low-Flow Well Sampling Form - Page 2 of 2 N. Petroleum Mw-2 16.04 Location:_ Depth To Of Screen (Below RP) Well Id: __ Top Bottom KR Field Personnel: Pump Intake Depth: TOZ Reference Point (RP – TOC or other-describe): Pumping Device: GEODUMP

Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH (mV)	DO (Mg/L)	Turbidity (NTU)	Comments
1255	4.84	120	120	1.	14.5	1.32	7.92	61	6-61	32.6)
13,00	5.05	<u>'</u>			16-9	1.23	7.77	-8	1.31	31.4	
	5.02				16.1	1.10	7.76	-77	0.80	22.4	
13:10	5,01				16.	1,09	1.76	-98	0,53	90	
13:15	<u>(1</u>			¥	16.0	1,13	વ	-100	.53	8.1	
13,20	.N	<u> </u>	₩	Zgal	'n	1.19	7,74	il	40	5.9	Sample
			j								
Notes:											

NEAR	Odor	<u></u> -			 		
	<u>. </u>					 	
	r			· ,,	 		
			<u> </u>	<u> </u>	 		
							_

Site Name/Location: N. Petroleum	Date: 7/18/06
Sample I.D.: Mw-lR Collect	ion Time 412
Sampling Sequence: 16 Of 16	***
EC S Field Staff Collecting This Sample:	I KR
Climatic Conditions (Temp/Precip):	\$0°, P, C.
Depth To Product:	Vater: 4, 85 Feet
Reference Point (TOC or other -Describe)	TOC
Ref. Point Elev. Relative To Ground Surface (Use "+" For	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	_
Presence/Absence Of NAPL And Detection Method:	ND /IF
Total Depth Of Boring (Take Measurement After Sampling	10 74
Well Yield: High Low P	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy 1 Opaque
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	A , C A
Alkalinity:	Chloride: /V/A
Iron (II):	Sulfate:
Notes: Slight odor, rocap	
·	

-- USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

				Low-	Flow Well Sa	ampling For	m – Pag	e 2 of 2			
Location	: <i>N</i>	· Petrole	λM			Depth T	0	NIA		/ 12 24	Of Screen (Below RP)
Well Id:		MW-IR						Тор	0-1	Bottom	,
Field Per	sonnel:		KR			Pump In	take Depti	h:	8,5'		
Referenc	e Point (RP	- TOC or othe	r-describe):	TOC	 .	Pumping	Device:_	Geo	pump		
Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH (mV)	DO (Mg/L)	Turbidity (NTU)	Comments
13:35	5.18	90	90		17.4	种药	7.57	22	7.24	134,0	
13:40	5.33	60	60		17.1	1.37	7.44	26	1.68	90.7	
	-		 		17.9	1.31	7,48	35	1.05	67,4	
13,50	6.21				17.5	1.28	7.50	45	.90	1520	
13:55	И				17.6	1.24	7.54	54	.90	131,0	
14.0b	5.21		<u> </u>		17.4	1.24	7.65	62	0.98	108.0	
14:05	u				17,3	1,25	7.55	66	0.96	98.8	
14:10	UI .	1/	10		17.2	1.24	7.56	69	0.95	88-0	Surple
	.,										
Notes:		(inht o	1			· · · · · · · · · · · · · · · · · · ·	, , , , - , , ,	! 		<u></u>	
7 7 8	Cay 5	(10ht 0)	<i>Not</i>	<u> </u>							
								· · · · ·			
										<u> </u>	

7/24/00	-	origin Pe	Arolam	4
00:01	CJCPO1	:	F	
B=100	-n Pest ^	20 m1 P	reduct renower	
Ime initial	017 7.76	D7 W 4,99	Thickness 0-23	
10:44 0 10:46 2 10:50 6 8	4.79 4.79 4.79 4.79 4.79	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.05 0.05 0.05 0.05	
12 14 11,00 16 18 20	4.80 4.80 4.79 4.79 4.79	4.84	0.04 0.04 0.05 0.05	
11:14 30	4,79	4.84	0.05)),

MW-19 - 16 Dotat with IP MW17 - 20 Detect WHAID

Boul Down Test - ND WALTP Jun-28

* MW 28 - No Doted will IP. + There was an oder but no

producted massen and of probe

MW. 7 3011 Down Test M D ml. Product Time DTP DTW Niders Time DTW Niders	,		<u> </u>)
Time DTP DTW Theres Timbel 5.68 5.51 0.13 11:48 0 5.70 5.73 0.03 11:50 2 5.69 5.75 0.05 11 5.70 5.75 0.06 8 5.69 5.75 0.06 10 5.69 5.75 0.06 14 5.69 5.75 0.06 14 5.69 5.75 0.06 16 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06	MW	J 301	Doug Test	~ 15 ml. Product
	17:08 74 11:20 1: 11:20 3 11:48 0	5.69 5.69 5.69 5.69 5.69 5.69 5.69 5.69	05555555555555555555555555555555555555	Pictures 0.03 0.03 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06
12.30 OHSIA 76.	· · · · · · · · · · · · · · · · · · ·	· - :	ž.	0.06
	17.30) OH,	site 76.	

MW7 (~5 ml Product) M	MSR (was a removed	 		
Time DIP DIW TIM	ne DIA DIW		,	
20 5.63 PHI	6:10 6.78 6.94			
15.46 5.61 5.62 11	6.8 6.92 6.93			
15:49 5.61 5.63 16;	20 6.90 6.91			
	22 6.88 6.90			
	25 6.88 6.96			
	27 686 67.00			
	19 6.85 67.02			
16:01 5-61 5-63 16:				
16:03 5.61 5.63 16:3				
	35 6.88 67.04			
16.42 5.62 5.64 17:	11 6.86 7.09			
Ca	P cross off when animal			
<u></u>	pot It back on			
	end of day.			·
	his is an above ground			
	asing so rain post			
	ew days could			·
	set in.			
		The second secon	The second se	
			•	
•				

Site Name/Location: N. Potroleum	Date: 7/31/06
Sample I.D.: MW@17 Collection	on Time 13-40
Sampling Sequence: Of2	
EC S Field Staff Collecting This Sample: 36	
Climatic Conditions (Temp/Precip): 75° P	
Depth To Product: Feet Depth To W	ater: 4.75 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	
Measurement Technique (WLM, IP or other -Describe)	<u>Lb</u>
Presence/Absence Of NAPL And Detection Method:	VD IP
Total Depth Of Boring (Take Measurement After Sampling):	11.13
Well Yield: High Low Pur	mped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque V
Sample Collected from (tubing, bailer, or other-describe)	Toking.
Submitted For Analysis By (Method or Methods): 803	16 VIsrup
Field Test Results (HACH Kits):	
Alkalinity:	Chloride:
Iron (II):	Sulfate:
Notes:	
and the second s	

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form – Page 2 of 2 Location: N. Petroleum / 11.13 Depth To Of Screen (Below RP) Well Id: MW \7 Top **Bottom** 8,00 Field Personnel: 36 Pump Intake Depth: Reference Point (RP – TOC or other-describe): Pumping Device: Pertalta Penn Depth To Time Purge Rate Pump Temperature Cumulative Specific ORP / рH DO Turbidity Comments (24 Hr) Water Volume Purged mL/min) Speed •c Conductance eН (Mg/L) (NTU) MGS (uS/cm) (mV) 4.75 15.00 13:10 2.52 0.50 500 300 7.19 137 11/80 Slight ador 4.75 14.70 (3:15 306 -135 2,40 7.29 8.80 Theen on pose 13:20 4.75 4.4 7.39 -137 5.3) 6,56 13:72 7.46 -139 5.50 7,56 13:30 2.20 -147 2.19 7.63 [-14] 4,55 13:35 35 13:40 4.29 3.00 2.17 147 :23 7.69 -143 Sampled Notes: NO COD ON COSING

No cap on caring

ECS Well Sampling Form - Page 1 of 2 Site Name/Location: 1 Parol-m St. Johnshire _____ Collection Time _____ 5.05 Sample I.D.: Mu 18 EC S Field Staff Collecting This Sample: 75° A Climatic Conditions (Temp/Precip): Depth To Water: 4.73 _ Feet Depth To Product: Reference Point (TOC or other -Describe)_ Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground): -O. 15 feet 41 Total Depth Of Boring (Take Measurement After Sampling):_ Well Yield: High Low Pumped Dry? Clear Cloudy Opaque Final Water Appearance (At Sample Collection) Sample Collected from (tubing, bailer, or other-describe) Tubing 80213 Viscan Submitted For Analysis By (Method or Methods): Field Test Results (HACH Kits): Chloride: NA Notes:

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum Depth To 1 10.88 Of Screen (Below RP) Well Id: MW 18 Top Bottom Field Personnel: 36 Pump Intake Depth: Reference Point (RP - TOC or other-describe): Pumping Device: Portubalde Pomo Time Depth To Purge Rate Pump Cumulative Temperature Specific рΗ ORP / DO Turbidity (24 Hr) Water mL/min) Speed Comments Volume Purged Salby °C Conductance eН (Mg/L) (NTU) (uS/cm) (mV) 14-40 4.73 140 140 15.3 2.73 0.10 10.04 -112 7.59 340 Moderate Odor 14:45 4.73 15.0 2.67 7.64 5.97 -11479 Shern on Purgo 14.50 4.73 15.1 2.62 7.68 47 4,55 -116 14:55 4.73 15.1 2.59 33 7.74 -119 3.85 15:00 4.73 15.0 2.50 7.80 -122 3.5) 24 15:05 T 2.00 15.8 2,53 7.85 4114 3.19 Samples Taber Notes: Cap on casing

MW17 DIW-> 4.59 10 oder 10:10 Mulg oTW- 4.61 No odor 10:14 MW-JJ Bail Dom Taid MINDE Ball Donn -3 贸 Finne MM 1127 4.37 2.87441029 Isilia Willia 10:22 4 4 4-69 10:58 6.86 10:24 11:00 10,26 11:00 1078 4.75 11:04 6.81 10.30 11:06 6.81 10:32 11:08 10:34 11:10 10:36 4,59 Itil 8-2 10,38 11:14 10:40 4.76 10:42 4.59 4.76 11718 11.32 4.58 12:12-6.75 as if our new brows blong Strong Golor - Strong Odor removed a 200 ml - removed ~30 ml of

12:30 Offstr 7.6

7/17/06 No. Han Petrojeun 5-1 I maly 08-204262 00 10:30 Optide JE/KR 10:45 Callibrate Horba 243 Ruh 8.45 W.21 Calibrate Pine Horita PH Cond Turb DO 413 - Could not find MW-1, MW-11, MW-12, MW-17, MW-18 - Found FP in MW-22 and MW-28 - 500 ML taken from MW-22

- 200mL takes from MW-28

	-		-							37
A ! 1	 	<u> </u>	No	احا	ين	PN	1/55.	2y_	1 :	
14 h	1	0				<u></u>		_[
B	efare	Buil	ry Me	45W	بسرر	1+5	-	<u> </u>		
''		_		' '			1		7.0-	<u>. </u>
DI	P= \$16	2.92		νı	V -,	7.	5 b	_	4216	
							_		= 0	,64
رکو	churge	test	-	3.	اريون	-6	1	7,32	-	
)						İ			i
Time	DTP	DTI	ع. ا ب	P 7	4,2	Kres	5	:		
0	609	7.09		0.1						· ·
2	6.98	7.09		0	i .			1	1	;
4	6.43	7,10		9.1	I			:	1	;
6	6,97	7,11					-	-		• :
8	6.97	7.12		<u>0,1</u> 0.1	5			-		;
lo	6.98	7.13		0,1	·				-	:
12	6,97	7.13		6.1				. ;	!	-
14	6.91	7.13		٥.	1. 1,					
16	6.47	7 1 3	1 P	φ. I	Ú				ì	!
16	6.97	713	7 1 1 1 1 1	0.1	T					•
20		7.1		9.)	,			-	-	:
30	6.46			6. <i>l</i>			1	:	Ì	· · · ·
	31.10	4	~ ·		V		1		į	1
	3/01	4	ـ ، <u>ـ</u> آ _ راجون	 	•	260	n Ì	FP		
	3. led	They	men h	(7)		10	رسد اسل	' 12. 0 L	1	1 i
	0~(10.0	12 T	N.C.	-1	NO W		304	101	-	1
1/6	1/51	2 (5)	f5; h	,	1<	1:3	20		-	•
V.	•				1	υ · 、	/·			

38 7/16/06 Northern Petrokun 08-2042620	, St. 5, VI
10:00Am Coste UR/J	
- Complete well months	ung.
10:15 Calibrate Horiba	(ECS)
349 4,28 Turb I	72 -
Callbrale Pine Horiba PH Cord Turb 1 3.86 22 125 4.47 209	<u> </u>
The Man party of the server of	E Notax

Site Name/Location: 1 Petroleum Bath St. Jethbury Date: 7/17/06
Sample I.D.: MW 5 Collection Time 11:45
Sampling Sequence: Of 18
EC S Field Staff Collecting This Sample:
Climatic Conditions (Temp/Precip): 90° F
Depth To Product: Feet Depth To Water: Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling):
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque Opaque
Sample Collected from (tubing, bailer, or other-describe) Tub.: 19
Submitted For Analysis By (Method or Methods): 80215 Visceh
Field Test Results (HACH Kits):
Alkalinity:
Iron (II):
Notes: odes sheen on purse
· · · · · · · · · · · · · · · · · · ·

[-1 } .

Low-Flow Well Sampling Form - Page 2 of 2 Location: N- Petgoleum 10.84 Depth To Of Screen (Below RP) Well Id: <u>M ~ 5</u> Bottom Top Field Personnel: 36 Pump Intake Depth: Pumping Device: Geograpo Peristallic Pana Reference Point (RP - TOC or other-describe): Cumulative Depth To Purge Rate Temperature Specific ORP / Turbidity Time Pump Ηg DO Comments Speed RPM Volume Purged 5 °C (24 Hr) Water mL/min) Conductance eН (Mg/L) (NTU) (ft) (uS/cm) (mV) 3.28 1.49 16 44 -57 3,65 -5 11.72 60 0.10 420 6 7000 15.2 1.50 4.20 S.J. 11:30 15.34 2.00 -67 1.49 11:72 15.42 11:30 4.20 15.42 5,85 755 -101 11:35 4,20 1.418 5,90 4.20 -110 1,5 708 5.96 20 15.55 1.56 715 4.20 6.48 - W1 Sample John Notes:

<u>000</u>	Shoen	ON Dag	<u></u>	 		 			·
	· · · · · · · · · · · · · · · · · · ·	· · · ·		 	· <u></u>			_	
						-			
		1 =				 			
	 -		•				<u>-</u>		

Site Name/Location: N. Petrokum Date: 7/17/06
Sample I.D.: M4-13 Collection Time 42.05
Sampling Sequence: $Q = Q = Q = Q = Q = Q = Q = Q = Q = Q $
EC S Field Staff Collecting This Sample:
Climatic Conditions (Temp/Precip):
Depth To Product: ND Feet Depth To Water: () Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling):
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque Opaque
Sample Collected from (tubing, bailer, or other-describe)
Submitted For Analysis By (Method or Methods): $VT \otimes 2IB$
Field Test Results (HACH Kits):
Alkalinity: Chloride:
Iron (II):
Notes: About
<u> </u>
· · · · · · · · · · · · · · · · · · ·

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum O/A 1 10.74 Depth To Of Screen (Below RP) Top Bottom Field Personnel: Pump Intake Depth: TOC Reference Point (RP - TOC or other-describe): Pumping Device: Depth To Purge Rate Time Pump Cumulative Temperature Specific pΗ ORP / DO Turbidity Comments Water °C. (24 Hr) Speed Volume mL/min) Conductance (Mg/L) (NTU) eН (ft) Purged (uS/cm) (mV) 1.5/ 11:45 120 10.16 120 3.8 219.0 0.66 11:50 7.30 133 -124 10.17 191,0 M:55 ìί 57.0 13.3 7.43 -130 11 12:60 7.51 4.02 3.3 -13312:65 7.55 3,42 1 2.5gas 141 -136 11 Smole Notes: odor

Site Name/Location: N. Petroleum St. Johnsburg Date: 7/17/01
Sample I.D.: MWW Collection Time 12:45
Sampling Sequence: 3 of 18
EC S Field Staff Collecting This Sample:
Climatic Conditions (Temp/Precip): 90° F
Depth To Product: Feet Depth To Water: 4.55 Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 10.95'
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)
Submitted For Analysis By (Method or Methods): SO2L5 VT Sccn
Field Test Results (HACH Kits):
Alkalinity:
Iron (II):
Notes: Offic and Sheen on purge
· ;

Low-Flow Well Sampling Form – Page 2 of 2											
Location	: W. P	drolein				Depth To	 o	NA		1 10.95	Of Screen (Below RP)
Well Id: MW 16								Тор	·	Bottom	
Field Per	sonnel:	TG				Pump In	take Deptl				
Referenc	Reference Point (RP - TOC or other-describe): TOC Pumping Device: Deriskille Pump										

Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed RPM	Cumulative Volume Purged چو ل پ	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH (mV)	DO (Mg/L)	Turbidity (NTU)	Comments
1292		70	70	0.10	15.62	2.50	6.19	-127	5.60	-5	
17:30	4.55		__		15.19	2.11	625	-130	278	505	
72:35	4.55				14.96	2.00	6.29	-129	2.13	735	
17:40	4.55			V	15.10	1.97	6.31	-129	2.00	162	
12:45	4,55	V		00.E	14.92	1.96	6.34	-129	1.79	102	sampled '
					<u>.</u>					^	DUP taking
							\sim				-
					_						
								<u></u>			
Notes:	Pdor	and sh	fan ON	Purge							

Site Name/Location: N. Petrokum	Date: 6/17/06	
Sample I.D.: MW- 22 Collect	ion Time	
Sampling Sequence: 4 Of 18		
EC S Field Staff Collecting This Sample:		
Climatic Conditions (Temp/Precip):	30° P. C.	
Depth To Product: 443 Feet Depth To W	ater: 5,79 Feet	
Reference Point (TOC or other -Describe)		
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	boveground, "-" For Belowground):feet	
Measurement Technique (WLM, IP or other -Describe)	IP	
Presence/Absence Of NAPL And Detection Method:	Defection IP	
Total Depth Of Boring (Take Measurement After Sampling)	NIA	
Well Yield: High Low Pu	imped Dry?	
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque	NI
Sample Collected from (tubing, bailer, or other-describe)	Tubing	
Submitted For Analysis By (Method or Methods):	VT 8621B	
Field Test Results (HACH Kits):		
Alkalinity: N/A	Chloride: /V///	
Iron (II): ///	Sulfate: /V/A	
Notes: Ball Down lest pretorn	(<u>\langle</u>	•

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum Depth To Of Screen (Below RP) Well Id: MW-22 Top Bottom Field Personnel: Pump Intake Depth: TOC Reference Point (RP – TOC or other-describe): Geogunp Pumping Device: Time Depth To Purge Rate Pump Cumulative Temperature Specific pН ORP / DO Turbidity Comments (24 Hr) Water mL/min) °C. Speed Volume Conductance eН (Mg/L) (NTU) (ft) Purged (uS/cm) (mV) Notes:

Site Name/Location: NP-10/ecm St. Johns	Date: 7/17/06
Sample I.D.: MW Collection	on Time 14:55
Sampling Sequence: 5 Of 18	
EC S Field Staff Collecting This Sample: _ \(\frac{\frac{1}{3}}{6}\).	
Climatic Conditions (Temp/Precip):	·
Depth To Product:	ater: <u>4.80</u> Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For Al	
Measurement Technique (WLM, IP or other -Describe)	<u></u>
Presence/Absence Of NAPL And Detection Method:	10 74
Total Depth Of Boring (Take Measurement After Sampling):	11.30
Well Yield: High Low Pur	mped Dry?
Final Water Appearance (At Sample Collection) Clear	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods): 802	16 VT Sony
Field Test Results (HACH Kits):	,
Alkalinity: N/A	Chloride: N/A_
Iron (II):	Sulfate: V/A
Notes: light oder	

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum 11.30 Depth To Of Screen (Below RP) Well Id: Mu/ Top Bottom Field Personnel: 36 Pump Intake Depth: Pumping Device: Person the geopers Reference Point (RP – TOC or other-describe): Time Depth To Purge Rate Pump Cumulative Temperature Specific ORP / Turbidity рΗ DO Comments Water mL/min) Speed Volume Purged School . ℃ (24 Hr)Conductance eН (Mg/L) (NTU) (ft) (uS/cm) (mV) 80 80 -178 14:23 0.10 15.08 6.08 4.80 1430 6,29 14.43 -127 473 480 3,68 635 784 -125 4,80 6.35 14:40 14.11 13.92 120 122 14,50 6.35 2.5.5 13.95 14,55 4.80 13.98 2.55 Daw Olach Notes: light odor

Site Name/Location: N. Petro leum	Date: 4/17/06
Sample I.D.: Mw - 19 Collect	ion Time 15 50
Sampling Sequence: 6 of 18	
EC S Field Staff Collecting This Sample:	
	80° P. C.
Depth To Product:	vater: 1 168 Feet
Reference Point (TOC or other -Describe)	<i>C</i>
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	LP /
Presence/Absence Of NAPL And Detection Method:	<u> </u>
Total Depth Of Boring (Take Measurement After Sampling	y,26
Well Yield: High Low P	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	lubing
Submitted For Analysis By (Method or Methods):	17 802113
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N/H
Iron (II):	Sulfate:
Notes: Godor and Sheen	

-- USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 N. Petroleum 11.26 Location: NI Depth To Of Screen (Below RP) Well Id: NW-19 Top Bottom 8.28 Field Personnel: Pump Intake Depth: TOC Reference Point (RP – TOC or other-describe): Geopunp Pumping Device: Time Depth To Purge Rate Pump Cumulative Temperature Specific pН ORP / DO Turbidity Comments (24 Hr)Water mL/min) Speed •c Volume Conductance (NTU) eН (Mg/L) (ft) Purged (uS/cm) (mV) 4.85 120 492.0 15:26 120 17.5 3,06 1.29 -136 7.061 248,0 15,25 M 120 120 2.34 15:30 2,22 C. 163 -150 197 143,0 12 Λ 15'35 2,23 1) 16.5 200,0 1.70 15:40 1. 17,0 1.48 255,0 2,13 15:45 16.6 ٧, 267.0 Notes: Oder and Sheep

Site Name/Location: N- Petroloum St. Johnsbury Date: 7/17/06
Sample I.D.: MW-Decs Collection Time 16.05
Sampling Sequence: Of 16
EC S Field Staff Collecting This Sample: 36
Climatic Conditions (Temp/Precip):
Depth To Product: Feet Depth To Water: Feet
Reference Point (TOC or other -Describe)
Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground):O, _O feet
Measurement Technique (WLM, IP or other -Describe)
Presence/Absence Of NAPL And Detection Method:
Total Depth Of Boring (Take Measurement After Sampling): 10:81
Well Yield: High Low Pumped Dry?
Final Water Appearance (At Sample Collection) Clear Cloudy Opaque Opaque
Sample Collected from (tubing, bailer, or other-describe).
Submitted For Analysis By (Method or Methods): 80216 VIscan
Field Test Results (HACH Kits):
Alkalinity: N/A Chloride: N/A
Iron (II):
Notes: light odor

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: 1 Perfoloum NA 1 10.87 Depth To Of Screen (Below RP) Well Id: MW-LECS Bottom Top Field Personnel: Pump Intake Depth: Pumping Device: Perhalstic Grann Reference Point (RP – TOC or other-describe): Time Depth To Purge Rate Pump Cumulative Temperature Specific pН ORP / DO Turbidity Comments (24 Hr) Water mL/min) Volume Speed °C Conductance (Mg/L) (NTU) eН Purged School RPM (ft) (uS/cm) (mV) 1530 5.48 4.70 60 0.10 17.27 -119 6.11 60 1535 5.50 16.25 -126 -5 15:40 5,50 2.49 16.02 6,29 -178 15:45 5:51 2.44 631 5.03 784 16,00 -127 6.32 15:50 5.51 16.10 2.39 -127 277 15:35 5.51 2.36 633 SIR 15.76 -125 2,32 16:00 5.51 15.81 6.32 442 -124 16:05 5.51 15.66 229 6.30 203 Samples 24-2 -121 Notes: light odor

Site Name/Location: N. Petro leun	Date: 1/17/06
	on Time
Sampling Sequence:OfOf	
EC S Field Staff Collecting This Sample:	
Climatic Conditions (Temp/Precip):	P.C.
Depth To Product: Feet	ater: <u>7,39</u> Feet
Reference Point (TOC or other -Describe)	TOC
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	boveground, "-" For Belowground): $\frac{\cancel{2} \cdot \cancel{3}}{\cancel{5} \cdot \cancel{5}}$ feet
Measurement Technique (WLM, IP or other -Describe)	TP .
Presence/Absence Of NAPL And Detection Method:	/ /I'
Total Depth Of Boring (Take Measurement After Sampling)	11.84
Well Yield: High Low Pu	mped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N/A
Iron (II):	Sulfate: N/A
Notes: 0 dw	
·	
•	

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS-

Location: N. Petroleum Depth To NA / 1156 Of Screen (Below RP)

Well Id: MV-27

Field Personnel: VR

Reference Point (RP – TOC or other-describe): TOC

Pump Intake Depth: G, 5

Pumping Device: Geograp

Time Depth To Purge Rate Mater mL/min) Speed Volume (t), Water (ft),
Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH	DO (Mg/L)	Turbidity (NTU)	Comments
19/6:45	12	60	60	f diged	178	(us/cm) - 41 4	7.48	(mV) 30	401	771.0	7
16'50	7.93)			17,3	0,381	7.24	43	2,82	461	
16:55	- \\				17,2	0.379	7,26	45	2.57	405,0	
17:00	7.94				16.9	0.375	7,31	54	1,96	698.0	\ / /
17:05	7.96				16-5	0.374	7.36	60	1.81	-5.0	
17:10	7,95				16.3	0.372	7.38	69	1.56	t [*]	
17:15	7.96			V	16,6	0.364	7.40	78_	1,38	£,	
17:20	7.96	>	V	Zgal	16.3	,368	7.40	73	1.28	10	
					<u> </u>						
·											
Natasi					<u> </u>						_6

Notes: Off

Site Name/Location: N. Petroleum	
Sample I.D.: Min 26 Collect	ion Time
Sampling Sequence: 9 Of 18	
EC S Field Staff Collecting This Sample: J.G	
Climatic Conditions (Temp/Precip): 97°	F
Depth To Product: Feet Depth To W	/ater: 7.62 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): + 3.00 feet
Measurement Technique (WLM, IP or other -Describe)	<u>Ib</u>
Presence/Absence Of NAPL And Detection Method:	rd IP
Total Depth Of Boring (Take Measurement After Sampling)	13.28
Well Yield: High Low Po	imped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods): 802	15 VIsan
Field Test Results (HACH Kits):	16/1
Alkalinity: N/A	Chloride:
Iron (II):	Sulfate: N/A
Notes: Notes:	
	,
<u> </u>	
·	· ·
	<u> </u>
<u> </u>	<u> </u>
	k.

-- LISE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum 13.28 Depth To Of Screen (Below RP) Well Id: Mw. 26 Top Bottom Field Personnel: 36 Pump Intake Depth: TOC Grapamo Reference Point (RP – TOC or other-describe): Pumping Device: Perstaldic Depth To Time Purge Rate Pump Cumulative Temperature Specific Turbidity пΗ ORP / DO Comments (24 Hr) Water mL/min) °C Conductance Speed Volume eН (Mg/L) (NTU) (ft)Purged (uS/cm) (mV) 7,69 19.48 60 65) 19.45 P3<u>8</u> 16:50 -33 16.55 19.34 0.26 Turbidity going 6.46 17:00 1.60 19.08 -40 0.26 19.09 17,05 1.45 846 7.66 0.27 Junped Sach down to -5 957 18.58 650 17:10 Then back to -S 18.91 Then both to - 85 mpkg 1.35 1.75 0-27 846 17,15 6.51 -40 7.66 Notes: Nona

Site Name/Location: N- Prholeum	Date: 7/17/06
Sample I.D.: MW 10) Collect	
Sampling Sequence: 10 of 18	
EC S Field Staff Collecting This Sample:	
Climatic Conditions (Temp/Precip):	5°P
Depth To Product:	fater: 4.26 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): -O. Belowground
Measurement Technique (WLM, IP or other -Describe)	127
Presence/Absence Of NAPL And Detection Method:	ND IS
Total Depth Of Boring (Take Measurement After Sampling)	D.26
Well Yield: High Low Po	imped Dry?
Final Water Appearance (At Sample Collection) Clear_	1
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods):	215 VT. Scan
Field Test Results (HACH Kits):	
Alkalinity: // / /	Chloride: M/A Sulfate: M/A
Iron (II):	Sulfate: N/A
Notes: Notes:	
<u> </u>	
	· · · · · · · · · · · · · · · · · · ·

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petreleum 12.26 Depth To Of Screen (Below RP) MW 102 Well Id: Top Bottom Field Personnel: J.G. 800 Pump Intake Depth: TOC Reference Point (RP – TOC or other-describe): Pumping Device: Perlataltic GOODONO Time Depth To Purge Rate Pump Cumulative Temperature Specific pН ORP / Turbidity DO Comments (24 Hr) Water mL/min) Speed Volume Purged 9-16-10 °C Conductance (Mg/L) (NTU) eН MAS (ft) (uS/cm) (mV) 17:50 420 68 80 0,10 ~103 512 6.71 3,20 16.04 0.76 239 15.32 17:55 4.20 0.81 181 -121 1,48 6.68 -128 4.20 0.85 18:00 173 0,88 4.21 6.58 8:05 -127 72 4.21 140 18.10 14.64 6.62 0.89 -13 0.90 18:15 4,21 148 -134 4,23 2.00 0.90 1,22 18:30 6.67 Samples tehan -136 Notes: Non.

Site Name/Location: N. Petroleum	Date: 7/18/06
Sample I.D.: NW 32 Collect	on Time
Sampling Sequence: Of S	
EC S Field Staff Collecting This Sample:	R
Climatic Conditions (Temp/Precip):	P. C.
Depth To Product: Feet Depth To W	ater: 4.66 Feet
Reference Point (TOC or other -Describe)	Toc
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	boveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	LP .
Presence/Absence Of NAPL And Detection Method:	/I/
Total Depth Of Boring (Take Measurement After Sampling)	10.60
Well Yield: High V Low Pt	imped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	lubing
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: M/H
Iron (II): ///†	Sulfate: /V//7
Notes: 1001	
	!

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petosleum 10.60 Depth To Of Screen (Below RP) Well Id: MW -32 1.5 Bottom Top VLR Field Personnel: Pump Intake Depth: 100 Reference Point (RP – TOC or other-describe): Pumping Device:_ Geopins Time Depth To Purge Rate Pump Cumulative Temperature Specific ORP / DO рН Turbidity Comments (24 Hr) Water mL/min) Volume Purged Sales •c Speed Conductance еH (Mg/L) (NTU) (ft) RPM (uS/cm) (mV) 4.66 10:30 21,24 60 60 0.96 6.18 108 920 O.io 6,32 4.66 6.28 10:35 20.71 0.99 106 845 4.66 50,53 18:40 6.43 455 1.01 5.14 10:45 0,99 20.40 87 320 6.47 4.74 4.98 20.61 10:50 0.99 651 78 225 10:55 4.66 655 20.70 0.97 197 70 11:00 6.53 69 0.99 4.67 30.18 191 11:05 0.98 20.13 6.59 4.45 62 187 184 90.08 iclo 6.62 436 0,99 11:15 4.67 175 19.91 6.64 55 425 0.98 Sam Dic Johan Notes: None

Site Name/Location: N Petroleum	Date: 7/18/06
	ion Time // O O
Sampling Sequence: 12 Of 18	
EC S Field Staff Collecting This Sample:	KR
Climatic Conditions (Temp/Precip):	86° P. C.
Depth To Product: Feet Depth To V	Vater: 42 Feet
Reference Point (TOC or other -Describe)	100
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): <a>
Measurement Technique (WLM, IP or other -Describe)	IP
Presence/Absence Of NAPL And Detection Method:	V /IP
Total Depth Of Boring (Take Measurement After Sampling	10.71
Well Yield: High Low P	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	lubing
Submitted For Analysis By (Method or Methods):	VI 8031B
Field Test Results (HACH Kits):	4441
Alkalinity: N/A	Chloride: ///
Iron (II):	Sulfate: N//†
Notes: None	

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 10,71 Location: N. Petsieum Depth To Of Screen (Below RP) Top **Bottom** Field Personnel: Pump Intake Depth: Geopump 100 Reference Point (RP - TOC or other-describe): Pumping Device: Time Depth To Purge Rate Cumulative Pump Temperature Specific рН ORP / DO Turbidity Comments (24 Hr) Water °C mL/min) Volume Speed Conductance eН (NTU) (Mg/L) (ft) Purged (uS/cm) (mV) bo 18.4 60 7,25 71.5 10:32 , 759 7.32 90 90 60.1 10:37 5.37 ,837 7,57 2.61 10'42 #1 7.69 ,94 1 E 47.7 36.6 7.75 10:47 702 1.62 .876 6.39 10:52 17,2 107 ,833 7.75 1.52 26,2 7114 2921 7.80 1,35 ii. 0:57 ,824 17,0 Notes: 1/200

Site Name/Location: N. Detloleum	Date: 1/14/66
Sample I.D.: MW-30 Collect	ion Time 11.50
Sampling Sequence: 13 Of 18	
EC S Field Staff Collecting This Sample:	
Climatic Conditions (Temp/Precip):	90°, P.C.
Depth To Product: Feet Depth To W	l
Reference Point (TOC or other -Describe)	100
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): feet
Measurement Technique (WLM, IP or other -Describe)	IP
Presence/Absence Of NAPL And Detection Method:	YD /IP
Total Depth Of Boring (Take Measurement After Sampling	10,60
Well Yield: High V Low P	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	
Sample Collected from (tubing, bailer, or other-describe)	Tubing
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N//F
Iron (II): // //-	Sulfate: N/A
Notes: Notes:	
·	<u> </u>

-USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS-

Location: N. Petroleum

Depth To

Pump Intake Depth:

Time Depth To

Water Malmin)

Depth To

Pump Cumulative Temperature Specific (24 Hr)

Water Malmin)

Depth To MAM | 10.60 Of Screen (Below RP)

Top Bottom

Pump Intake Depth:

Time Obepth To Purge Rate Malmin Speed Volume

Pump Cumulative Temperature Specific PH ORP | DO Turbidity (Mg/L) (NTU)

Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH (mV)	DO (Mg/L)	Turbidity (NTU)	Comments
11:15	5.18	60	60	æ	189	.536	7,93	2 4	9,03	125,0	
11:20	5.16	60	60		17,9	,512	7.77	-21	4,03	38,2	
51:25	η	٠,	<i>t.</i> -		17.6	.64]	7,76	-37	2,85	25,1	
11:30	17	e t	``\		<i>1</i> 7,7	1671	780	-45	2,45	26,1	
11:35	и	/1 	η,		17,4	.691	7.79	-62	2.02	23.1	
11:40	5,17			· V	17.3	,706	7,79	-60	1.69	17.5	
4:45	5.17	· ·	\bigvee	291	17.3	1720	7.74	-62	1.55	10,1	Smple
}	-										
Natasi						ļ <u></u>					

Notes:	None			 	_	 						
		 		 		_		 				
			<u>-</u> .	 		 	<u> </u>	 	 _	_		_
		 	_	 		 		 	 			
		·		 -			_	 	 	_		_

Site Name/Location: N. Petroleun	Date: 7/18/06
Sample I.D.: MW & Collect	ion Time 2.10
Sampling Sequence: 14 Of 18	·
EC S Field Staff Collecting This Sample: <u>J6</u>	
Climatic Conditions (Temp/Precip): \(\sum_{50}^{\circ}\)	
Depth To Product: Peet Depth To W	ater: <u>5.86</u> Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground): \(\frac{1}{3}\)\(\frac{0}{0}\)\(\frac{1}{2}\)\
Measurement Technique (WLM, IP or other -Describe)	160
Presence/Absence Of NAPL And Detection Method:	l
Total Depth Of Boring (Take Measurement After Sampling)	1: 14.66
<u> </u>	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	
Sample Collected from (tubing, bailer, or other-describe)	
Submitted For Analysis By (Method or Methods):	VT 80213
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N/A
Iron (II):	Sulfate: /V//t
Notes: None	
	!

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum 14-66 Of Screen (Below RP) Depth To Well Id: MW 8 Top Bottom Field Personnel: <u>J</u>6 Pump Intake Depth: TOC Reference Point (RP – TOC or other-describe): Pumping Device: Ceppum P Depth To Time Purge Rate Pump Cumulative Specific Temperature ORP / рН DO Turbidity Comments Water Speed KIM Volume Purged 9000 (24 Hr) mL/min) °C Conductance eН (Mg/L) (NTU) (ft) (uS/cm) (mV) 10 11:35 60 6.48 -98 0.10 20.36 5-86 -81 11:40 133 1-30 1710 11:50 5.86 6.51 1.29 17.02 109 11:55 5.86 17.15 1.87 1.29 6.57 -117 146 12:00 5.86 16.68 6.50 -118 157 1.29 12:05 5.86 1.29 6.52 1.69 120 5.86 12:10 6.52 Sample taken 1.29 108 16.50 1.75 -120 Notes: None

Site Name/Location: N. Petroleum	Date: 7/18/06
Sample I.D.: MW 29 Collecti	on Time 12; 1/2
Sampling Sequence: 15 Of 18	
EC S Field Staff Collecting This Sample:	KK
Climatic Conditions (Temp/Precip):	80°, P. C.
Depth To Product: /// Feet Depth To W	ater: 4.70 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	
Presence/Absence Of NAPL And Detection Method:	
Total Depth Of Boring (Take Measurement After Sampling)	11.00
Well Yield: High Low Po	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	
Sample Collected from (tubing, bailer, or other-describe)	luting
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	11/4
Alkalinity: N/A	Chloride: N/A Sulfate: N/A
Iron (II):	Sulfate: ///
Notes: None	
·	, <u> </u>

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 N. Petrojeum Location: NA 11.00 Depth To Of Screen (Below RP) Тор Bottom Field Personnel: Pump Intake Depth: Beopump Reference Point (RP – TOC or other-describe): Pumping Device: Time Depth To Purge Rate Temperature Pump Cumulative Specific ORP/ DO pΗ Turbidity Comments (24 Hr) Water mL/min) Speed . ℃ Volume Conductance eН (Mg/L) (NTU) (ft) Purged (uS/cm) (mV) 120 12:00 120 ,500 7.91 24.2 8.92 20.4 12:05 ,521 7.66 129 194 4.0 7,4 12:10 ,584 Û 1.8 7,63 655 12:20 n 23 h 638 12:25 Y 8.0 .98 67 4.78 -31 12:30 .610 H 12:35 ,694 -34 Sungh И ,74 Notes:

1/ 3/2

Site Name/Location: N. Petroleum	Date: 7/18/06
Sample I.D.: MW-O Collect	ion Time
Sampling Sequence: 16 of 18	
EC S Field Staff Collecting This Sample:	
Climatic Conditions (Temp/Precip):	
Depth To Product:	ater: 4.81 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	17
Presence/Absence Of NAPL And Detection Method:	VD / IP
Total Depth Of Boring (Take Measurement After Sampling	10.8%
Well Yield: High \(\sum_{\text{Planck}} \) Low \(\text{Planck} \)	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)	\ \ \ a \ \ -
Submitted For Analysis By (Method or Methods):	VT 80213
Field Test Results (HACH Kits):	
Alkalinity:	Chloride: N/A Sulfate: N/A
Iron (II):	Sulfate: N/A
Notes: Nore	
	-
	, :

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 110.88 M. Petrieum Location: NA Depth To Of Screen (Below RP) Top Bottom Field Personnel: 36 Pump Intake Depth: TOC Reference Point (RP - TOC or other-describe): Geogunp Pumping Device: Time Depth To Purge Rate Pump Cumulative Temperature Specific рН ORP / DO Turbidity Comments (24 Hr) Water Speed >>M Volume Purged Lby mL/min) °C Conductance eН (Mg/L) (NTU) (ft) (uS/cm) (mV) 4.83 17:32 17.87 5.71 60 60 0.10 6.53 298 1:01 4.82 12:40 17.18 6.48 3.00 1.04 273 1245 4.8) 16.61 1.13 -29 2.34 266 4.81 050 16.55 1.19 276 13:33 4.82 406 16.25 -53 1.20 13:00 4.87 -56 16.38 1.23 6.47 300 15.99 4.82 13.05 6.48 -56 80 13:10 Sample taken 4.81 16.09 1.23 6.49 ~58 Notes:

· None		
		<u> </u>
		

Site Name/Location: N. Petr, leum	Date: 7/18/06
Sample I.D.: MW-2 Collect	tion Time 13.22
Sampling Sequence: 17 Of 16	
EC S Field Staff Collecting This Sample:	KR
Climatic Conditions (Temp/Precip):	P.C.
Depth To Product: Feet Depth To V	Water: 4,80 Feet
Reference Point (TOC or other -Describe)	Toc
Ref. Point Elev. Relative To Ground Surface (Use "+" For	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	<u> </u>
Presence/Absence Of NAPL And Detection Method:	NO /IP
Total Depth Of Boring (Take Measurement After Sampling	3: 11.64
Well Yield: High Low P	rumped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque
Sample Collected from (tubing, bailer, or other-describe)_	
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	
Alkalinity: N/A	Chloride: // A
Iron (II):	Sulfate: N/A
Notes: Oils	
·	

-- USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Ğ	
,	

Low-Flow Well Sampling Form - Page 2 of 2 N. Petroleum Mw-2 16.04 Location:_ Depth To Of Screen (Below RP) Well Id: __ Top Bottom KR Field Personnel: Pump Intake Depth: TOZ Reference Point (RP – TOC or other-describe): Pumping Device: Geodunp

Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH (mV)	DO (Mg/L)	Turbidity (NTU)	Comments
1255	4.84	120	120	1.	14.5	1.32	7.92	61	6-61	32.6)
13,00	5.05	<u>'</u>			16-9	1.23	7.77	-8	1.31	31.4	
	5.02				16.1	1.10	7.76	-77	0.80	22.4	
13:10	5,01				16.	1,09	1.76	-98	0,53	90	
13:15	<u>(1</u>			¥	16.0	1,13	ų	-100	.53	8.1	
13.20	.N	<u> </u>	₩	Zgal	'n	1.19	7,74	il	40	5.9	Sample
			j								
Notes:											

NEAR	Odor	<u></u> -					
	<u>. </u>					 	
	r			· ,,	 		
			<u> </u>	<u> </u>	 		
							<u></u>

Site Name/Location: N. Petroleum	Date: 7/18/06
Sample I.D.: Mw-lR Collect	ion Time 412
Sampling Sequence: 16 Of 16	***
EC S Field Staff Collecting This Sample:	I KR
Climatic Conditions (Temp/Precip):	\$0°, P, C.
Depth To Product:	Vater: 4, 85 Feet
Reference Point (TOC or other -Describe)	TOC
Ref. Point Elev. Relative To Ground Surface (Use "+" For	Aboveground, "-" For Belowground):feet
Measurement Technique (WLM, IP or other -Describe)	_
Presence/Absence Of NAPL And Detection Method:	ND / IT
Total Depth Of Boring (Take Measurement After Sampling	10 74
Well Yield: High Low P	umped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy 1 Opaque
Sample Collected from (tubing, bailer, or other-describe)	1 - 1 -
Submitted For Analysis By (Method or Methods):	VT 8021B
Field Test Results (HACH Kits):	A . C A
Alkalinity: // / /	Chloride: /V/A
Iron (II):	Sulfate:
Notes: Slight odor, rocap	
· · · · · · · · · · · · · · · · · · ·	

-- USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Location: No Petro Jeum Depth To N/A / 12 24 Of Screen (Below RP)											
Location		Depth To		NIA		/ 12 24	Of Screen (Below RP)				
Well Id:		MW-IR						Тор	0-1	Bottom	,
Field Per	sonnel:		KR			Pump Intake Depth: Bottom Bottom					
Referenc	e Point (RP	- TOC or othe	r-describe):	TOC	 .	Pumping Device: Geopump					
Time (24 Hr)	Depth To Water (ft)	Purge Rate mL/min)	Pump Speed	Cumulative Volume Purged	Temperature °C	Specific Conductance (uS/cm)	pН	ORP / eH (mV)	DO (Mg/L)	Turbidity (NTU)	Comments
13:35	5.18	90	90		17.4	种的	7.57	22	7.24	134,0	
13:40	5.33	60	60		17.1	1.37	7.44	26	1.68	90.7	
	-		<u> </u>		17.9	1.31	7,48	35	1.05	67,4	
13,50	<u>6.21</u>				17.5	1.28	7.50	45	.90	1520	
13:55	И				17.6	1.24	7.54	54	.90	131,0	
14.0b	5.21		<u> </u>		17.4	1.24	7.65	62	0.98	108.0	
14:05	u				17,3	1,25	7.55	66	0.96	98.8	
14:10	UI .	1/	10		17.2	1.24	7.56	69	0.95	88-0	Surple
Notes: No Cap Slight oder											
wolf Dione other											

7/24/00	-	origin Pe	Arolam	4
2-80 _00:01	CJCPO1	:	F	
B=100	-n Pest ^	20 m1 P	roduct renower	
Initial	017 7.76	D7 W 4,99	Thickness 0-23	
10:44 0 10:50 6 10:50 6	4.79 4.79 4.79 4.79 4.79	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.01	
12 14 11,00 16 18 20	4.80 4.80 4.79 4.79 4.79	4.84	0.04 0.04 0.05 0.05	
11:14 30	4,74	4.84	0.05))

MW-19 - 16 Dotat with IP MW17 - 20 Detect WHAID

Boul Down Test - ND WALTP Jun-28

* MW 28 - No Doted will IP. + There was an oder but no

producted massen and of probe

MW: 7 3011 Down Test And MI. Product That DTP DTW Midnes That DTP DTW Midnes That of 568 5751 0.03 11:50 2 5.69 5.74 0.05 11 5.70 5.75 0.06 12 5.69 5.75 0.06 10 5.69 5.75 0.06 11 5.69 5.75 0.06 11 5.69 5.75 0.06 12 5.69 5.75 0.06 12 5.69 5.75 0.06 13 5.69 5.75 0.06 14 5.69 5.75 0.06 15 5.69 5.75 0.06 12 5.69 5.75 0.06 12 5.69 5.75 0.06 12 5.69 5.75 0.06 12 5.69 5.75 0.06				· · · · · · · · · · · · · · · · · · ·
Time DTP DTW Thomas Total 568 551 0.13 11:48 0 5.70 5.73 0.03 11:50 2 5.69 5.75 0.05 11 5.70 5.75 0.06 8 5.69 5.75 0.06 10 5.69 5.75 0.06 14 5.69 5.75 0.06 16 5.69 5.75 0.06 16 5.69 5.75 0.06 16 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06 18 5.69 5.75 0.06	MW-7	3011	Down Test	~ 15 ml. Product
16 5.69 5.75 0.06 18 5.69 5.75 0.06 1208 20 5.69 5.76 0.07 1278 20 5.69 5.75 0.06	Tring 1 12:48 0 11:30 2 11 6 8 10	5.69 5.69 5.69 5.69 5.69 5.69 5.69	5.51 5.73 5.75 5.75 5.75 5.75 5.75	1. de le 0.03 0.03 0.05 0.05 0.06 0.06
12:30 offsite 36.	14 16 18 208 20	5.69 5.69 5.69	5.75 5.75 5.76	0.06 0.06 0.07
	12:30	off.	site IG.	

MW7 (~5 ml Product)	MM 38 (was a removed	 	·	
Time DIP DIW	Time DIP DTW		,	
20 5.63 A	16:10 6.78 6.94			
15.46 5.61 5.62	16.8 6.92 6.93			
15:49 3.61 5.63	16:20 6.90 6.91			
15:51 5.61 5.63	1622 6.88 6.90			
	16:25 6.88 6.96			•
	16:27 686 7.00			
	16.39 6.85 6.7.03			
- 12	1431 6.85 67.02			
	6:33 6.88 \$7.03			
	635 688 07.04			
16.42 5.62 5.64 1	17:11 6.86 7.09			
	cap was off when and			
	I pot It back on			
	at end of day.			·
	This is an above ground			
	casing so rain past			
	few days could			·
	set in.			
			· .	
		The second secon	· · · · · · · · · · · · · · · · · · ·	
			•	

ECS Well Sampling Form - Page 1 of 2

Site Name/Location: N. Potroleum	Date: 7/31/06
Sample I.D.: MW@17 Collection	on Time 13-40
Sampling Sequence: Of2	
EC S Field Staff Collecting This Sample: 36	
Climatic Conditions (Temp/Precip): 75° P	
Depth To Product: Feet Depth To W	ater: 4.75 Feet
Reference Point (TOC or other -Describe)	
Ref. Point Elev. Relative To Ground Surface (Use "+" For A	
Measurement Technique (WLM, IP or other -Describe)	<u>Lb</u>
Presence/Absence Of NAPL And Detection Method:	VD IP
Total Depth Of Boring (Take Measurement After Sampling):	11.13
Well Yield: High Low Pur	mped Dry?
Final Water Appearance (At Sample Collection) Clear_	Cloudy Opaque V
Sample Collected from (tubing, bailer, or other-describe)	Toking.
Submitted For Analysis By (Method or Methods): 803	16 VIsrup
Field Test Results (HACH Kits):	
Alkalinity:	Chloride:
Iron (II):	Sulfate:
Notes:	
and the second s	

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form – Page 2 of 2 Location: N. Petroleum / 11.13 Depth To Of Screen (Below RP) Well Id: MW \7 Top **Bottom** 8,00 Field Personnel: 36 Pump Intake Depth: Reference Point (RP – TOC or other-describe): Pumping Device: Pertalta Penn Depth To Time Purge Rate Pump Temperature Cumulative Specific ORP / рH DO Turbidity Comments (24 Hr) Water Volume Galler mL/min) Speed •c Conductance eН (Mg/L) (NTU) MGS (uS/cm) (mV) 4.75 15.00 13:10 2.52 0.50 500 300 7.19 137 11/80 Slight ador 4.75 14.70 (3:15 306 -135 2,40 7.29 8.80 Theen on pose 13:20 4.75 ,4.4 7.39 -137 5.3) 6,56 13:72 7.46 -139 5.50 7,56 13:30 2.20 -147 2.19 7.63 [-14] 4,55 13:35 35 13:40 4.29 3.00 2.17 147 :23 7.69 -143 Sampled Notes: NO COD ON COSING

No cap on caring

ECS Well Sampling Form - Page 1 of 2 Site Name/Location: 1 Parol-m St. Johnshire _____ Collection Time _____ 5.05 Sample I.D.: Mu 18 EC S Field Staff Collecting This Sample: 75° A Climatic Conditions (Temp/Precip): Depth To Water: 4.73 _ Feet Depth To Product: Reference Point (TOC or other -Describe)_ Ref. Point Elev. Relative To Ground Surface (Use "+" For Aboveground, "-" For Belowground): -O. 15 feet 41 Total Depth Of Boring (Take Measurement After Sampling):_ Well Yield: High Low Pumped Dry? Clear Cloudy Opaque Final Water Appearance (At Sample Collection) Sample Collected from (tubing, bailer, or other-describe) Tubing 80213 Viscan Submitted For Analysis By (Method or Methods): Field Test Results (HACH Kits): Chloride: NA Notes:

--USE REVERSE SIDE OF FORM FOR LOW FLOW SAMPLING PARAMETERS--

Low-Flow Well Sampling Form - Page 2 of 2 Location: N. Petroleum Depth To 1 10.88 Of Screen (Below RP) Well Id: MW 18 Top Bottom Field Personnel: 36 Pump Intake Depth: Reference Point (RP - TOC or other-describe): Pumping Device: Portubalde Pomo Time Depth To Purge Rate Pump Cumulative Temperature Specific рΗ ORP / DO Turbidity (24 Hr) Water mL/min) Speed Comments Volume Purged Salby °C Conductance eН (Mg/L) (NTU) (uS/cm) (mV) 14-40 4.73 140 140 15.3 2.73 0.10 10.04 -112 7.59 340 Moderate Odor 14:45 4.73 15.0 2.67 7.64 5.97 -11479 Shern on Purgo 14.50 4.73 15.1 2.62 7.68 47 4,55 -116 14:55 4.73 15.1 2.59 33 7.74 -119 3.85 15:00 4.73 15.0 2.50 7.80 -122 3.5) 24 15:05 T 2.00 15.8 2,53 7.85 4114 3.19 Samples Taber Notes: Cap on casing

MW17 DIW-> 4.59 10 oder 10:10 Mulg oTW- 4.61 No odor 10:14 MW-JJ Bail Dom Taid MINDE Ball Donn -3 贸 Finne MM 1127 4.37 2.87441029 Isilia Willia 10:22 4 4 4-69 10:58 6.86 10:24 11:00 10,26 11:00 1078 4.75 11:04 6.81 10.30 11:06 6.81 10:32 11:08 10:34 11:10 10:36 4,59 Itil 8-2 10,38 11:14 10:40 4.76 10:42 4.59 4.76 11718 11.32 4.58 12:12-6.75 as if our new brows blong Strong Golor - Strong Odor removed a 200 ml - removed ~30 ml of

12:30 Offstr 7.6

APPENDIX C

BAILDOWN TEST DATA & ANALYSIS

MW-7 Results of Product Bail-Down Test Northern Petroleum in St. Johnsbury, VT

	7/18	3/2006				7/24	/2006		
Time (min)	DTP	DTW	Thickness (ft)	thick time	Time (min)	<u>DTP</u>	DTW	Thickness (ft)	thick time
1	5.62	5.75	0.13	initial	1	5.68	5.81	0.13	initial
1	5.65	5.74	0.09	0	1	5.70	5.73	0.03	0
2	5.64	5.71	0.07	2	2	5.69	5.74	0.05	2
4	5.63	5.71	0.08	4	4	5.70	5.75	0.05	4
6	5.64	5.74	0.10	6	6	5.69	5.75	0.06	6
8	5.64	5.77	0.13	8	8	5.69	5.75	0.06	8
10	5.64	5.76	0.12	10	10	5.69	5.76	0.07	10
12	5.64	5.74	0.10	12	12	5.69	5.75	0.06	12
14	5.64	5.74	0.10	14	14	5.69	5.75	0.06	14
16	5.64	5.77	0.13	16	16	5.69	5.75	0.06	16
18	5.64	5.77	0.13	18	18	5.69	5.75	0.06	18
20	5.63	5.77	0.14	20	20	5.69	5.76	0.07	20
30	5.64	5.67	0.03	30	30	5.69	5.75	0.06	30
	7/3	1/2006				8/7/	2006		
Time (min)	DTP	DTW	<u>Thickness</u>	thick time	Time (min)	DTP	DTW	Thickness (ft)	thick time
1	5.60	5.63	0.03	initial	1	5.49	5.50	0.01	initial
1	5.61	5.62	0.01	0	1	ND	5.50	0.00	0
3	5.61	5.63	0.02	3	2	5.495	5.50	0.005	2
5	5.61	5.63	0.02	5	4	5.495	5.50	0.005	4
8	5.61	5.63	0.02	8	6	5.495	5.50	0.005	6
10	5.61	5.63	0.02	10	8	ND	5.49	0.00	8
13	5.61	5.64	0.03	13	10	ND	5.49	0.00	10
15	5.61	5.63	0.02	15	12	5.495	5.50	0.005	12
17	5.61	5.63	0.02	17	14	5.495	5.50	0.005	14
19	5.61	5.63	0.02	19	16	ND	5.49	0.00	16
56	5.62	5.64	0.02	56	18	ND	5.49	0.00	18
					20	ND	5.50	0.00	20
					405	NID	F F0	0.00	405

105

ND

5.50

0.00

105

MW-7 Results of Product Bail-Down Test Northern Petroleum St. Johnsbury, VT

MW-12 Results of Product Bail Down Test Northern Petroleum in St. Johnsbury, VT

7/31/2006

Time (min)	<u>DTP</u>	DTW	Thickness (ft)	thick time
1	3.88	4.08	0.20	initial
1	3.90	3.94	0.04	0
11	3.88	3.99	0.11	11
14	3.88	4.01	0.13	14
17	3.88	4.01	0.13	17
19	3.88	4.01	0.13	19
23	3.88	4.01	0.13	23
25	3.88	4.01	0.13	25
27	3.88	4.01	0.13	27
30	3.88	4.01	0.13	30
82	3.88	4.01	0.13	82

MW-12 Results of Product Bail-Down Test Northern Petroleum St. Johnsbury, VT

MW-22 Results of Product Bail-Down Test Northern Petroleum in St. Johnsbury, VT

	7/17	7/2006				7/24	/2006		
Time (min)	<u>DTP</u>	DTW	Thickness (ft)	thick time	Time (min)	DTP	DTW	Thickness (ft)	thick time
1	4.43	5.79	1.36	initial	1	4.76	4.99	0.23	initial
1	4.66	4.82	0.16	0	1	4.79	4.81	0.02	0
2	4.65	4.82	0.17	2	2	4.79	4.82	0.03	2
4	4.65	4.81	0.16	4	4	4.79	4.85	0.06	4
6	4.65	4.82	0.17	6	6	4.79	4.85	0.06	6
8	4.65	4.81	0.16	8	8	4.79	4.84	0.05	8
10	4.65	4.81	0.16	10	10	4.79	4.84	0.05	10
12	4.65	4.81	0.16	12	12	4.80	4.84	0.04	12
14	4.66	4.81	0.15	14	14	4.80	4.84	0.04	14
16	4.66	4.81	0.15	16	16	4.79	4.84	0.05	16
18	4.66	4.81	0.15	18	18	4.79	4.84	0.05	18
20	4.66	4.80	0.14	20	20	4.79	4.84	0.05	20
30	4.65	4.80	0.15	30	30	4.79	4.84	0.05	30
	7/31	/2006				8/7/	2006		
Time (min)	<u>DTP</u>	DTW	Thickness	thick time	Time (min)	<u>DTP</u>	DTW	<u>Thickness</u>	thick time
1	4.69	4.82	0.13	initial	1	4.37	5.82	1.45	initial
1	4.71	4.76	0.05	0	1	4.61	4.69	0.08	0
4	4.69	4.78	0.09	4	2	4.59	4.73	0.14	2
7	4.69	4.78	0.09	7	4	4.59	4.74	0.15	4
9	4.69	4.78	0.09	9	6	4.59	4.75	0.16	6
11	4.69	4.79	0.10	11	8	4.59	4.76	0.17	8
13	4.69	4.79	0.10	13	10	4.59	4.76	0.17	10
15	4.69	4.79	0.10	15	12	4.59	4.76	0.17	12
35	4.69	4.78	0.09	35	14	4.59	4.76	0.17	14
66	4.70	4.79	0.09	66	16	4.59	4.76	0.17	16
					18	4.59	4.76	0.17	
					20	4.59	4.76	0.17	20
35 66	4.69 4.70			35 66	16	4.59	4.76	0.17	

70

4.58

4.74

0.16

70

MW-22 Results of Product Bail-Down Test Northern Petroleum St. Johnsbury, VT

MW-28 Results of Product Bail-Down Test Northern Petroleum in St. Johnsbury, VT

7/17/2006 8/7/2006

Time (min)	DTP	DTW	Thickness (ft)	thick time	Time (min)	DTP	DTW	Thickness (ft)	thick time
1	6.92	7.56	0.64	initial	1	6.68	7.03	0.35	initial
1	6.99	7.09	0.10	0	1	6.85	6.86	0.01	0
2	6.98	7.09	0.11	2	2	6.81	6.95	0.14	2
4	6.98	7.10	0.12	4	4	6.83	6.92	0.09	4
6	6.97	7.11	0.14	6	6	6.81	6.95	0.14	6
8	6.97	7.12	0.15	8	8	6.81	6.95	0.14	8
10	6.97	7.13	0.16	10	10	6.83	6.93	0.10	10
12	6.97	7.13	0.16	12	12	6.82	6.90	80.0	12
14	6.97	7.13	0.16	14	14	6.81	6.93	0.12	14
16	6.97	7.13	0.16	16	16	6.81	6.91	0.10	16
18	6.97	7.13	0.16	18	18	6.81	6.96	0.15	18
20	6.97	7.13	0.16	20	20	6.81	6.88	0.07	20
30	6.96	7.13	0.17	30	74	6.75	6.77	0.02	74

7/31/2006

Time (min)	<u>DTP</u>	<u>DTW</u>	Thickness	thick time
1	6.78	6.94	0.16	initial
1	6.92	6.93	0.01	0
2	6.90	6.91	0.01	2
4	6.88	6.90	0.02	4
7	6.88	6.96	0.08	7
9	6.86	7.00	0.14	9
11	6.85	7.02	0.17	11
13	6.85	7.02	0.17	13
15	6.88	7.03	0.15	15
17	6.88	7.04	0.16	17
53	6.86	7.09	0.23	53

MW-28 Results of Product Bail-Down Test Northern Petroleum St. Johnsbury, VT

